如圖,在△ABC的一邊AB上有一點(diǎn)P.
(1)能否在另外兩邊AC和BC上各找一點(diǎn)M、N,使得△PMN的周長(zhǎng)最短?若能,請(qǐng)
畫出點(diǎn)M、N的位置;若不能,請(qǐng)說明理由;
(2)若∠ACB=48°,在(1)的條件下,求出∠MPN的度數(shù).
分析:(1)如圖:作出點(diǎn)P關(guān)于AC、BC的對(duì)稱點(diǎn)D、G,然后連接DG交AC、BC于兩點(diǎn),標(biāo)注字母M、N;
(2)根據(jù)對(duì)稱的性質(zhì),易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,繼而求得答案.
解答:解:(1)①作出點(diǎn)P關(guān)于AC、BC的對(duì)稱點(diǎn)D、G,
②連接DG交AC、BC于兩點(diǎn),
③標(biāo)注字母M、N;
           
(2)∵PD⊥AC,PG⊥BC,
∴∠PEC=∠PFC=90°,
∴∠C+∠EPF=180°,
∵∠C=48°,
∴∠EPF=132°,
∵∠D+∠G+∠EPF=180°,
∴∠D+∠G=48°,
由對(duì)稱可知:∠G=∠GPN,∠D=∠DPM,
∴∠GPN+∠DPM=48°,
∴∠MPN=132°-48°=84°.
點(diǎn)評(píng):此題考查了最短路徑問題以及線段垂直平分線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,在△ABC中,D、E分別是AC和AB上的點(diǎn),BD與CE相交于點(diǎn)O,給出下列四個(gè)條件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.
(1)上述四個(gè)條件中,由哪兩個(gè)條件可以判定AB=AC?(用序號(hào)寫出所有的情形)
(2)選擇(1)小題中的一種情形,說明AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•南京)已知如圖,在△ABC的外接圓中,D是弧BC的中點(diǎn),AD交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F.
(1)若以每?jī)蓚(gè)相似三角形為一組,試問圖中有幾組相似三角形,并且逐一寫出.
(2)求證:FD2=AD•ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高淳縣一模)如圖①,若點(diǎn)P是△ABC內(nèi)或邊上一點(diǎn),且∠BPC=2∠A,則稱點(diǎn)P是△ABC內(nèi)∠A的二倍角點(diǎn).
(1)如圖②,點(diǎn)O等邊△ABC的外心,連接OB、OC.
①求證:點(diǎn)O是△ABC內(nèi)∠A的一個(gè)二倍角點(diǎn);
②作△BOC的外接圓,求證:弧BOC上任意一點(diǎn)(B、C除外)都是△ABC內(nèi)∠A的二倍角點(diǎn).
(2)如圖③,在△ABC的邊AB上求作一點(diǎn)M,使點(diǎn)M是△ABC內(nèi)∠A的一個(gè)二倍角點(diǎn)(要求用尺規(guī)作圖,保留作圖痕跡,并寫出作法).
(3)在任意三角形形內(nèi),是否存在一點(diǎn)P同時(shí)為該三角形內(nèi)三個(gè)內(nèi)角的二倍角點(diǎn)?請(qǐng)直接寫出結(jié)論,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖,在△ABC的外接圓中,D是弧BC的中點(diǎn),AD交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F.
(1)若以每?jī)蓚(gè)相似三角形為一組,試問圖中有幾組相似三角形,并且逐一寫出.
(2)求證:FD2=AD•ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1997年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知如圖,在△ABC的外接圓中,D是弧BC的中點(diǎn),AD交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F.
(1)若以每?jī)蓚(gè)相似三角形為一組,試問圖中有幾組相似三角形,并且逐一寫出.
(2)求證:FD2=AD•ED.

查看答案和解析>>

同步練習(xí)冊(cè)答案