【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____.
【答案】2π-4
【解析】
由OC=4,點(diǎn)C在上,CD⊥OA,求得DC==,運(yùn)用S△OCD=OD,求得OD=時(shí)△OCD的面積最大,運(yùn)用陰影部分的面積=扇形AOC的面積-△OCD的面積求解.
∵OC=4,點(diǎn)C在上,CD⊥OA,∴DC==,∴S△OCD=OD,∴S△OCD2=OD2(16-OD2)=-OD4+4OD2=-(OD2-8)2+16,∴當(dāng)OD2=8,即OD=2時(shí)△OCD的面積最大,∴DC===2,∴∠COA=45°,∴陰影部分的面積=扇形AOC的面積-△OCD的面積=-4=2π-4,故答案為2π-4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么當(dāng)EF=________,FD=________時(shí),△DEF∽△ABC;
(2)如果DE=10,那么當(dāng)EF=________,FD=________時(shí),△FDE∽△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D、E,且tan∠BOA=.
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點(diǎn)的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個(gè)符合條件的P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動點(diǎn),延長BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD,PO.
(1)求證:△CDP≌△POB;
(2)填空:
① 若AB=4,則四邊形AOPD的最大面積為 ;
② 連接OD,當(dāng)∠PBA的度數(shù)為 時(shí),四邊形BPDO是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場今年春天試營銷,每周的銷售量y(斤)是銷售單價(jià)x(元/斤)的一次函數(shù),且滿足如下關(guān)系:
x(元/斤) | 450 | 500 | 600 |
y(斤) | 350 | 300 | 200 |
(1)請根據(jù)表中的數(shù)據(jù)求出y與x之間的函數(shù)關(guān)系式;
(2)若銷售每斤茶葉獲利不能超過40%,該茶場每周獲利不少于30000元,試確定銷售單價(jià)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 頂點(diǎn) A(2,3).若以原點(diǎn) O 為位似中心,畫三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標(biāo)為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com