【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△FEC
(1)猜想AE與BF有何關(guān)系,說(shuō)明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABFE為矩形?
【答案】(1)AE∥BF,AE=BF(平行四邊形的對(duì)邊平行且相等);
(2)S四邊形ABFE=12cm2;
(3)當(dāng)∠ACB=60°時(shí),四邊形ABFE為矩形.
【解析】
試題分析:(1)由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°可知:AC=CF,BC=CE,四邊形ABFE為平行四邊形,于是得到結(jié)論;
(2)由于AC是△ABE的BE邊上中線,于是得到S△ABE=2S△ABC=6,同理S△BEF=2S△CEF=6,即可得到結(jié)論;
(3)要判斷四邊形ABFE為矩形,從對(duì)角線來(lái)看,要求AF=BE,又AF與BE互相平分,只需要AC=BC,而AB=AC,故△ABC為等邊三角形,∠ACB=60°.
試題解析:(1)AE∥BF,AE=BF.
理由是:∵△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△FEC,
∴△ABC≌△FEC,
∴AB=FE(全等三角形的對(duì)應(yīng)邊相等),
∠ABC=∠FEC(全等三角形的對(duì)應(yīng)角相等),
∴AB∥FE(內(nèi)錯(cuò)角相等,兩直線平行),
∴四邊形ABFE為平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),
∴AE∥BF,AE=BF(平行四邊形的對(duì)邊平行且相等);
(2)由(1)得四邊形ABFE為平行四邊形,
∴AC=CF,BC=CE,
∴根據(jù)等底同高得到S△ABC=S△ACE=S△BCF=S△CEF=3,
S四邊形ABFE=4S△ABC=12cm2;
(3)當(dāng)∠ACB=60°時(shí),四邊形ABFE為矩形.
理由是:AB=AC,∠ACB=60°,
∴△ABC是等邊三角形,
∴BC=AC,∠BAC=60°,
∴∠ACE=120°.
又BC=CE,AC=CF,
∴∠EAC=∠CEA=30°,
∴∠BAE=90°,同理可證其余三個(gè)角也為直角.
∴四邊形ABFE為矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解本屆初三學(xué)生體質(zhì)健康情況,從全校600名初三學(xué)生中隨機(jī)抽取46名學(xué)生進(jìn)行調(diào)查,上述抽取的樣本容量為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點(diǎn)D,過(guò)點(diǎn)D的直線交BC邊于點(diǎn)E,∠BDE=∠A.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑R=5,cosA=,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
(1)x2﹣3=0
(2)x2+4x﹣12=0
(3)x2﹣6x+8=0 (配方法)
(4)4x(2x﹣1)=3(2x﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三線段,能組成等腰三角形的是( )
A. 1,1,2 B. 2,2,5 C. 3,3,5 D. 3,4,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在四邊形ABCD中,AB∥CD,E,F(xiàn)為對(duì)角線AC上兩點(diǎn),且AE=CF,DF∥BE,AC平分∠BAD.求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有一個(gè)角是60°的菱形繞它的中心旋轉(zhuǎn),使它與原來(lái)的菱形重合,那么旋轉(zhuǎn)的角度至少是
A.90° B.180° C.270° D.360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與x軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,﹣3),且BO=CO
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為M,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照下列步驟做一做:
(1)一個(gè)兩位數(shù)的個(gè)位上的數(shù)是a,十位上的數(shù)是b,請(qǐng)寫(xiě)出這個(gè)兩位數(shù);
(2)交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,得到一個(gè)新數(shù);請(qǐng)寫(xiě)出這個(gè)新兩位數(shù);
(3)求這兩個(gè)兩位數(shù)的和.結(jié)果能被11整除嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com