【題目】如圖,在菱形中,,,點(diǎn)是線段上一動(dòng)點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),則的最小值( )
A.B.C.D.
【答案】D
【解析】
先作點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)點(diǎn)G,再連接BG,過(guò)點(diǎn)B作BH⊥CD于H,運(yùn)用勾股定理求得BH和GH的長(zhǎng),最后在Rt△BHG中,運(yùn)用勾股定理求得BG的長(zhǎng),即為PE+PF的最小值.
解:作點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)點(diǎn)G,連接PG、PE,則PE=PG,CE=CG=2,
連接BG,過(guò)點(diǎn)B作BH⊥CD于H,則∠BCH=∠CBH=45°,
∵四邊形ABCD是菱形,
∴
∴Rt△BHC中,BH=CH= ,
∴HG=HC-GC=3-2=1,
∴Rt△BHG中,BG= ,
∵當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),PE+PF=PG+PB=BG(最短),
∴PE+PF的最小值是.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,的平分線交于點(diǎn),交的延長(zhǎng)線于點(diǎn),
(1)寫(xiě)出對(duì)由條件推出的相等或互補(bǔ)的角
(2)與相等嗎?為什么?
(3)證明:
請(qǐng)?jiān)谙旅娴睦ㄌ?hào)內(nèi),填上推理的根據(jù),并完成下面的證明:
( ① )
(已證),,( ② )
又(角平分線的定義)
( ③ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)F在BA的延長(zhǎng)線上,點(diǎn)E在線段CD上,EF與AC相交于點(diǎn)G,∠BDA+∠CEG=180°.
(1)AD與EF平行嗎?請(qǐng)說(shuō)明理由;
(2)若點(diǎn)H在FE的延長(zhǎng)線上,且∠EDH=∠C,則∠F與∠H相等嗎,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過(guò)1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過(guò)1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過(guò)部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫(xiě)取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過(guò)計(jì)算說(shuō)明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育場(chǎng)看臺(tái)的坡面AB與地面的夾角是37°,看臺(tái)最高點(diǎn)B到地面的垂直距離BC為2.4米,看臺(tái)正前方有一垂直于地面的旗桿DE,在B點(diǎn)用測(cè)角儀測(cè)得旗桿的最高點(diǎn)E的仰角為33°,已知測(cè)角儀BF的高度為1.2米,看臺(tái)最低點(diǎn)A與旗桿底端D之間的距離為15米(C,A,D在同一條直線上).
(1)求看臺(tái)最低點(diǎn)A到最高點(diǎn)B的坡面距離AB;
(2)一面紅旗掛在旗桿上,固定紅旗的上下兩個(gè)掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時(shí)間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計(jì)算結(jié)果保留兩位小數(shù))(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過(guò)A,C畫(huà)直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,點(diǎn)分別是線段的中點(diǎn),分別是線段的中點(diǎn),當(dāng)四邊形的邊滿足___________________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為,頂點(diǎn)C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是=﹣1,﹣1的差倒數(shù)是.已知a1=﹣,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推.
(1)分別求出a2,a3,a4的值;
(2)求a1+a2+a3+…+a3600的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com