【題目】如圖,0為原點,A(4,0),E(0,3),四邊形OABC,四邊形OCDE都為平行四邊形,OC=5,函數(shù)y= (x>0)的圖象經(jīng)過AB的中點F和DE的中點G,則k的值為

【答案】9
【解析】解:∵A(4,0),E(0,3), ∴OE=3,OA=4,
OABC和OCDE得:OE∥DC,BC∥OA且DC=OE=3,BC=OA=4,
設C(a,b),則D(a,b+3)、B(4+a,b),
∵AB的中點F和DE的中點G,
∴G( ),F(xiàn)( ),
∵函數(shù)y= (x>0)的圖象經(jīng)過點G和F,

3a=4b,a= ,
∵OC=5,C(a,b),
∴a2+b2=52 ,
,b=±3,
∵b>0,
∴b=3,a=4,
∴F(6, ),
∴k=6× =9;
故答案為:9.
(1)根據(jù)兩平行四邊形對邊平行且相等可知:OE=3,OA=4,并由設出C、B、D的坐標;(2)表示出點F和G的坐標,并根據(jù)反比例函數(shù)列等式,求出a與b的關系:3a=4b,a= ;(3)由OC的長及點C的坐標列式:a2+b2=52 , 求出a與b的值;(4)寫出點G或點F的坐標,計算k的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)4x+3(2x﹣3)=12﹣(x﹣4)

(2)

(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。

A. OA=OC,ADBC B. ABC=ADC,ADBC

C. AB=DC,AD=BC D. ABD=ADBBAO=DCO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個點中,哪一個點表示的數(shù)的平方值最大(  )

A. P B. R C. Q D. T

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:如圖1,在平面內(nèi)選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”. 應用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應記為(

A.(60°,4)
B.(45°,4)
C.(60°,2
D.(50°,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017懷化,第10題,4分)如圖,A,B兩點在反比例函數(shù)的圖象上,C,D兩點在反比例函數(shù)的圖象上,ACy軸于點E,BDy軸于點F,AC=2,BD=1EF=3,則的值是(  )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題需鋪設一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設實際每天鋪設管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應補為(
A.每天比原計劃多鋪設10米,結果延期15天才完成
B.每天比原計劃少鋪設10米,結果延期15天才完成
C.每天比原計劃多鋪設10米,結果提前15天才完成
D.每天比原計劃少鋪設10米,結果提前15天才完成

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,EBC上一點,CE=5,F(xiàn)DE的中點.CEF的周長為18,則OF的長為( )

A. 3 B. 4 C. 2.5 D. 3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務?

查看答案和解析>>

同步練習冊答案