【題目】如圖,已知拋物線yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A1,0),C0,3)兩點(diǎn),與x軸交于點(diǎn)B

1)若直線ymx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo):

3)在拋物線上存在點(diǎn)P(不與C重合),使得APB的面積與ACB的面積相等,求點(diǎn)P的坐標(biāo).

【答案】1y=﹣x22x+3,yx+3;(2)點(diǎn)M(﹣12);(3)點(diǎn)P的坐標(biāo)為:(﹣2,3)或(,﹣3)或(,﹣3).

【解析】

1)根據(jù)拋物線的對(duì)稱性求出B(﹣3,0),然后可設(shè)交點(diǎn)式為yax1)(x+3),代入(03)求出a即可;然后再根據(jù)B、C坐標(biāo)利用待定系數(shù)法求直線BC的解析式即可;

2)點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B,直線BC交拋物線對(duì)稱軸于點(diǎn)M,則點(diǎn)M即為所求,據(jù)此即可得解;

3APB的面積與ACB的面積相等,則|yP|yC3,即x22x3±3,求解即可.

1)∵拋物線經(jīng)過A10),且對(duì)稱軸為直線x=﹣1,

∴點(diǎn)B(﹣3,0),

設(shè)拋物線的表達(dá)式為:yax1)(x+3),

代入C03)得:3(﹣1×3,

解得:a=﹣1,

故拋物線的表達(dá)式為:y=﹣(x1)(x+3)=﹣x22x+3

由直線BC的解析式為:ymx+n,

代入B(﹣30),C0,3)得:,解得:,

∴直線BC的解析式為:yx+3;

2)點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B(﹣3,0),直線BC交函數(shù)對(duì)稱軸于點(diǎn)M,則點(diǎn)M即為所求,

∵直線BC的解析式為:yx+3,

當(dāng)x=﹣1時(shí),y2,

∴點(diǎn)M(﹣1,2);

3APB的面積與ACB的面積相等,則|yP|yC3,

即﹣x22x+3±3

當(dāng)﹣x22x+33時(shí),解得:x1=-2x20(舍去),

當(dāng)﹣x22x+3=-3時(shí),解得:x1,x2,

故點(diǎn)P的坐標(biāo)為:(﹣2,3)或(,﹣3)或(,﹣3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCABAC=6,BC=8,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)EAC邊上,∠ADEB.設(shè)BD的長(zhǎng)為xCE的長(zhǎng)為y

(1)當(dāng)DBC的中點(diǎn)時(shí),求CE的長(zhǎng);

(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)如果ADE為等腰三角形,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)即將來臨,某企業(yè)接到一批禮品生產(chǎn)任務(wù),約定這批禮品的出廠價(jià)為每件6元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人小王第x天生產(chǎn)的禮品數(shù)量為y件,yx滿足如下關(guān)系:y.

1)小王第幾天生產(chǎn)的禮品數(shù)量為390件?

2)如圖,設(shè)第x天生產(chǎn)的每件禮品的成本是z元,zx之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若小王第x天創(chuàng)造的利潤(rùn)為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①b2a=0②abc0;③a2b+4c0;④8a+c0.其中正確的有(

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①b2a=0;②abc0③a2b+4c0;④8a+c0.其中正確的有(

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有0、10、2030的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.

1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;

2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A1,1),B42),C34).

1)請(qǐng)畫出ABC關(guān)于原點(diǎn)對(duì)稱的A1B1C1;并寫出點(diǎn)A1,B1C1的坐標(biāo).

2)請(qǐng)畫出ABCO順時(shí)針旋轉(zhuǎn)90°后的A2B2C2,并寫出點(diǎn)A2,B2C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+1,直線y2=﹣x+1,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1y2,取y1,y2中的較小值記為M;若y1y2,記My1y2.例如:當(dāng)x2時(shí),y1=﹣3,y2=﹣1,y1y2,此時(shí)M=﹣3.下列判斷中:①當(dāng)x0時(shí),My1;②當(dāng)x0時(shí),Mx的增大而增大;③使得M大于1x值不存在;④使得M的值是﹣,其中正確的個(gè)數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對(duì)稱軸為x=﹣1,且過點(diǎn)(,0),有下列結(jié)論:①abc0; a2b+4c0;③25a10b+4c0;④3b+2c0;其中所有正確的結(jié)論是(  )

A.①③B.①③④C.①②③D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案