已知,如圖,在直角梯形COAB中,OC∥AB,以O(shè)為原點建立平面直角坐標系,A、B、C三點的坐標分別為A(8,0),B(8,10),C(0,4),
點D為線段BC的中點,動點P從點O出發(fā),以每秒1個單位的速度,沿折線OABD的路線移動,移動的時間為秒.
(1)求直線BC的解析式;
(2)若動點P在線段OA上移動,當(dāng)為何值時,四邊形OPDC的面積是梯形COAB面積的?
(3)動點P從點O出發(fā),沿折線OABD的路線移動過程中,設(shè)△OPD的面積為S,請直接寫出S與 的函數(shù)關(guān)系式,并寫出自變量的取值范圍。
(1)設(shè)直線的解析式為.依題意得:
解得
直線的解析式為.
(2)如圖,取OA的中點E,連接DE.
∵D、E分別為梯形OCBA兩腰的中點
∴為梯形的中位線.
∴DE∥OC∥AB,
∵OC⊥OA
則于
,,
.
又,
.
如圖,點在上,且四邊形的面積為時,
∴,
.
∴.即
.
(3)
【解析】(1)題目給出了B、C點的坐標,可設(shè)出直線BC的解析式,應(yīng)用待定系數(shù)法求出解析式即可;
(2)可根據(jù)四邊形OPDC的面積是梯形COAB面積的列出方程并解出方程即可;
(3)要根據(jù)P的位置在不同邊的具體情況利用相關(guān)的知識寫出函數(shù)關(guān)系式及取值范圍.
科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個
單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)
沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達B時,P、Q兩點同時停止
運動,設(shè)P、Q運動的時間為t秒(t>0).
(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.
求出此時△APQ的面積.
(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯
形?若存在,求出點E的坐標;若不存在,請說明理由.
(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個
單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)
沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達B時,P、Q兩點同時停止
運動,設(shè)P、Q運動的時間為t秒(t>0).
(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.
求出此時△APQ的面積.
(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯
形?若存在,求出點E的坐標;若不存在,請說明理由.
(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com