【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點都在格點上,

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1
(2)畫出△ABC繞原點O旋轉(zhuǎn)180°后的△A2B2C2

【答案】
(1)解:如圖,△A1B1C1為所作


(2)解:如圖,△A2B2C2為所作.


【解析】(1)利用關(guān)于x軸對稱的點的坐標(biāo)特征寫出點A、B、C的對稱點A1、B1、C1的坐標(biāo),然后描點即可得到△A1B1C1;(2)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出點A、B、C的對稱點A2、B2、C2的坐標(biāo),然后描點即可得到△A2B2C2
【考點精析】通過靈活運用作軸對稱圖形,掌握畫對稱軸圖形的方法:①標(biāo)出關(guān)鍵點②數(shù)方格,標(biāo)出對稱點③依次連線即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E是BC的中點,連接并延長DE交AB的延長線于點F.
(1)求證:△CDE≌△BFE;
(2)若CD=3cm,請求出AF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示表示王勇同學(xué)騎自行車離家的距離與時間之間的關(guān)系,王勇9點離開家,15點回家,請結(jié)合圖象,回答下列問題:

到達(dá)離家最遠(yuǎn)的地方是什么時間?離家多遠(yuǎn)?

他一共休息了幾次?休息時間最長的一次是多長時間?

在哪些時間段內(nèi),他騎車的速度最快?最快速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知一元二次方程x2﹣3x+m﹣1=0.
(1)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程有兩個相等的實數(shù)根,求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水利部確定每年的322日至28日為中國水周1994年以前為71日至7日),從1991年起,我國還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識,提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖表:

請根據(jù)上面的統(tǒng)計圖表,解答下列問題:

1)在頻數(shù)分布表中:m= ,n= ;

2)根據(jù)題中數(shù)據(jù)補全頻數(shù)直方圖;

3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的表達(dá)式為,直線x軸交于點D,直線x軸交于點A,且經(jīng)過點B,直線、交于點.

(1)求m的值;

(2)求直線的表達(dá)式;

(3)根據(jù)圖象,直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉(zhuǎn)90°
得到△OA1B1

(1)線段A1B1的長是 , ∠AOA1的度數(shù)是
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售每個進(jìn)價為150元和120元的AB兩種型號的足球,如表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

3

1450

進(jìn)價、售價均保持不變,利潤銷售收入進(jìn)貨成本

(1)AB兩種型號的足球的銷售單價;

(2)若商場準(zhǔn)備用不多于8400元的金額再購進(jìn)這兩種型號的足球共60個,求A種型號的足球最多能采購多少個?

(3)的條件下,商場銷售完這60個足球能否實現(xiàn)利潤超過2550元,若能,請給出相應(yīng)的采購方案;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD的長為

查看答案和解析>>

同步練習(xí)冊答案