(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   
【答案】分析:根據(jù)題意,點(diǎn)B的坐標(biāo)為(0,-1),AE=2,根據(jù)EF平分矩形ABCD的面積,先求出點(diǎn)F的坐標(biāo),再利用待定系數(shù)法求函數(shù)解形式.
解答:解:∵AB=2,點(diǎn)A的坐標(biāo)為(0,1),
∴OB=1,∴點(diǎn)B坐標(biāo)為(0,-1),
∵點(diǎn)E(2,1),
∴AE=2,ED=AD-AE=1,
∵EF平分矩形ABCD的面積,
∴BF=DE,
∴點(diǎn)F的坐標(biāo)為(1,-1),
設(shè)直線EF的解析式為y=kx+b,
,
解得,
所以直線EF的解析式為y=2x-3.
故答案為y=2x-3.
點(diǎn)評(píng):本題考查矩形的性質(zhì)和待定系數(shù)法求函數(shù)解形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案