如圖,梯形ABCD中,ADBC,∠DCB=45°,CD=2,BD⊥CD.過點(diǎn)C作CE⊥AB于E,交對角線BD于F,點(diǎn)G為BC中點(diǎn),連接EG、AF.
(1)求EG的長;
(2)求證:CF=AB+AF.
(1)∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
DB2+CD2
=2
2

∵CE⊥BE,
∠BEC=90°,
∵點(diǎn)G為BC的中點(diǎn),
∴EG=
1
2
BC=
2
(直角三角形斜邊上中線的性質(zhì)).
答:EG的長是
2


(2)證明:在線段CF上截取CH=BA,連接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADF=∠HDC,
∵ADBC,
∴∠ADF=∠DBC=45°,
∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°,
∴∠ADF=∠HDF,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)證明:延長BA與CD延長線交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵在△BCD中,∠DCB=45°,BD⊥CD,
∴∠BDC=90°,
∴∠DBC=45°=∠DCB,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵ADBC,∠ADF=∠DBC=45°,∠BDM=90°,
∴∠ADM=∠ADF=45°,
在△AFD和△AMD中
DM=DF
∠ADM=∠ADF
AD=AD
,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形腰長為12cm,上底長為15cm,上底與腰的夾角為120°,則梯形下底的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰梯形ABCD中,ADBC,AB=CD,AD=10cm,BC=30cm,動點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)以每秒1cm的速度運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以每秒3cm的速度運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.
(1)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)四邊形ABQP能成為等腰梯形嗎?如果能,求出t的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等腰梯形上、下底差等于一腰的長,那么腰與下底的夾角是( 。
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ADBC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用6個(gè)全等的等腰梯形紙板不重疊不留空隙地拼成一個(gè)邊框?yàn)檎呅蔚募埈h(huán),則等腰梯形的四個(gè)角中最小的角為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ADBC,AB=DC,P是AD中點(diǎn).求證:PB=PC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定理證明:“等腰梯形的兩條對角線相等”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形的腰長為5cm,它的周長是22cm,則它的中位線長為______cm.

查看答案和解析>>

同步練習(xí)冊答案