【題目】如圖,二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1、3,則下列結(jié)論:①abc<0;②2a+b=0;③3a+2c>0;④對于任意x均有ax2﹣a+bx﹣b≥0,正確個數(shù)有( 。
A.1個B.2個C.3個D.4個
【答案】B
【解析】
由拋物線開口方向得到a>0,利用拋物線與x軸的交點(diǎn)問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即﹣=1,所以b=﹣2a<0,利用拋物線與y軸的交點(diǎn)位置得到c<0,則可對①進(jìn)行判斷;利用b=﹣2a可對②進(jìn)行判斷;由于x=﹣1時,y=0,所以a﹣b+c=0,則c=﹣3a,3a+2c=﹣3a<0,于是可對③進(jìn)行判斷;根據(jù)二次函數(shù)性質(zhì),x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對④進(jìn)行判斷.
解:∵拋物線開口向上,
∴a>0,
∵拋物線與x軸的交點(diǎn)的坐標(biāo)分別為(﹣1,0),(3,0),
∴拋物線的對稱軸為直線x=1,即﹣=1,
∴b=﹣2a<0,
∵拋物線與y軸的交點(diǎn)在x軸下方,
∴c<0,
∴abc>0,所以①錯誤;
∵b=﹣2a,
∴2a+b=0,所以②正確;
∵x=﹣1時,y=0,
∴a﹣b+c=0,即a+2a+c=0,
∴c=﹣3a,
∴3a+2c=3a﹣6a=﹣3a<0,所以③錯誤;
∵x=1時,y的值最小,
∴對于任意x,a+b+c≤ax2+bx+c,
即ax2﹣a+bx﹣b≥0,所以④正確.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,3),與x軸的一個交點(diǎn)在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:
①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實(shí)數(shù)根,其中正確的結(jié)論為( )
A.②③ B.①③ C.①②③ D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動點(diǎn),連接PQ,則PQ長的最大值與最小值的和是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動,點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,點(diǎn)Q也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t(s),當(dāng)△APQ是直角三角形時,t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點(diǎn)分別是A、B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求A、B的坐標(biāo);
(2)利用函數(shù)圖象,寫出y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點(diǎn)A放在⊙O上,且AC與⊙O相切于點(diǎn)A(如圖1),將△ABC從點(diǎn)A開始,繞著點(diǎn)A順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點(diǎn)E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數(shù);④點(diǎn)O到EF的距離.其中不變的量是___________________(填序號);
(2)當(dāng)α=________°時,BC與⊙O相切(直接寫出答案);
(3)當(dāng)BC與⊙O相切時,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)C按順時針方向旋轉(zhuǎn)至,使點(diǎn)落在BC的延長線上已知∠A=27°,∠B=40° ,則___度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)折疊鋪平,恰好拼成一個無縫隙無重疊的矩形EFGH,若EH=5,EF=12,則矩形ABCD的面積是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com