【題目】已知正方形ABCD,點F是射線DC上一動點(不與C,D重合).連接AF并延長交直線BC于點E,交BD于H,連接CH,過點C作CG⊥HC交AE于點G.
(1)若點F在邊CD上,如圖1.
①證明:∠DAH=∠DCH;
②猜想:△GFC的形狀并說明理由.
(2)取DF中點M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.
【答案】(1)①證明見解析;②△GFC是等腰三角形,理由見解析;(2)BE的長為1或7.
【解析】
(1)①根據(jù)正方形的性質可得AD=CD,∠ADH=∠CDH,利用SAS可證明△ADH≌△CDH,即可得∠DAH=∠DCH;
②由正方形的性質可得∠DAH+∠AFD=90°,由CG⊥HC可得∠DCH+∠FCG=90°,根據(jù)∠AFD=∠CFG,可得∠CFG=∠FCG,即可證明CG=FG,可得△GFC是等腰三角形;
(2)當點F在線段CD上時,連接DE,根據(jù)正方形的性質及角的和差關系可得∠E=∠GCE,即可證明CG=EG,由△GFC是等腰三角形可得CG=GF,可得點G為EF中點,即可證明GM是△FDE的中位線,根據(jù)中位線的性質可求出DE的長,利用勾股定理可求出CE的長,進而根據(jù)BE=BC+CE即可求出BE的長;當點F在DC延長線上時,連接DE,同理可得MG為△FDE的中位線,可求出DE的長,利用勾股定理可求出CE的長,根據(jù)BE=BC-CE即可求出BE的長.
(1)①∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠ADB=∠CDB=45°,
在△ADH和△CDH中,,
∴△ADH≌△CDH,
∴∠DAH=∠DCH.
②△GFC是等腰三角形,理由如下:
∵四邊形ABCD是正方形,CG⊥HC,
∴∠ADF=∠HCG=90°,
∴∠DAH+∠AFD=DCH+∠DCG=90°,
∵∠DAH=∠DCH,∠HFD=∠CFG,
∴∠CFG=∠GCF,
∴CF=CG,
∴△GFC是等腰三角形.
(2)如圖,當點F在線段CD上時,連接DE,
∵四邊形ABCD是正方形,
∴∠CEF+∠CFG=90°,∠GCE+∠GCF=90°,
∵∠CFG=∠GCF,
∴∠CEF=∠GCE,
∴CG=EG,
∵CG=FG,
∴FG=EG,
∵點M是DF的中點,
∴GM是△DFE的中位線,
∵GM=2.5,
∴DE=2GM=5,
∵正方形ABCD的邊長為4,
∴CE==3,
∴BE=BC+CE=4+3=7.
如圖,當點F在DC的延長線上時,連接DE,
同理可得:MG為△DFE的中位線,
∴DE=2GM=5,
∴CE==3,
∴BE=BC-CE=4-3=1,
綜上所述:BE的長為1或7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的對角線交于點點,分別在,上()且,,的延長線交于點,,的延長線交于點,連接.
(1)求證:.
(2)若正方形的邊長為4,為的中點,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰6”中C的位置是有理數(shù)_____,2018應排在A,B,C,D,E中的_____位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△BAD≌△EBC,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)如圖1,當A,B,E三點在同一直線上時,判斷AC與CN數(shù)量關系為________;
(2)將圖1中△BCE繞點B逆時針旋轉到圖2位置時,(1)中的結論是否仍成立?若成立,試證明之,若不成立,請說明理由;
(3)將圖1中△BCE繞點B逆時針旋轉一周,旋轉過程中△CAN能否為等腰直角三角形?若能,直接寫出旋轉角度;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在直角坐標系xOy中,點A,點B坐標分別為(﹣1,0),(0, ),連結AB,OD由△AOB繞O點順時針旋轉60°而得.
(1)求點C的坐標;
(2)△AOB繞點O順時針旋轉60°所掃過的面積;
(3)線段AB繞點O順時針旋轉60°所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如 圖,在邊長為3 cm的正方形ABCD中,點E為BC邊上的任意一點,AF⊥AE,AF交CD的延長線于F,則四邊形AFCE的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,對角線與交于點.過點作的平行線,過點作的平行線,兩直線相交于點.
(1)求證:四邊形是矩形;
(2)若,,則菱形的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com