【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點G.
(1)求證:△ABE∽△EGB.
(2)若AB=4,求CG的長.
【答案】(1)證明見解析;(2)CG=6.
【解析】
(1)由正方形的性質(zhì)與已知得出∠A=∠BEG,證出∠ABE=∠G,即可得出結(jié)論;
(2)由AB=AD=4,E為AD的中點,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出結(jié)果.
(1)證明:∵四邊形ABCD為正方形,且∠BEG=90°,
∴∠A=∠BEG,
∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
∴∠ABE=∠G,
∴△ABE∽△EGB;
(2)∵AB=AD=4,E為AD的中點,
∴AE=DE=2,
在Rt△ABE中,BE=,
由(1)知,△ABE∽△EGB,
∴,即:,
∴BG=10,
∴CG=BG﹣BC=10﹣4=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點M(﹣2,),頂點坐標(biāo)為N(﹣1,),且與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式;
(2)點P為直線y=﹣1上的動點,Q是拋物線線上的動點,若以A,C,P,Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo);
(3)在直線AC上是否存在一點Q,使△QBM的周長最小?若存在,求出Q點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=-x,點A1的坐標(biāo)為(-3,0). 過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點A2,再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點A3,…按此做法進行下去,點A2 017的坐標(biāo)為 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點O,A;將C1繞點A旋轉(zhuǎn)180°得到C2 , 交x軸于A1;將C2繞點A1旋轉(zhuǎn)180°得到C3 , 交x軸于點A2 . .....如此進行下去,直至得到C2018 , 若點P(4035,m)在第2018段拋物線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=80°,點D,E分別在邊AB,AC上,且DA=DE=CE.
(1)求作點F,使得四邊形BDEF為平行四邊形;(要求:尺規(guī)作圖,保留痕跡,不寫作法)
(2)連接CF,寫出圖中經(jīng)過旋轉(zhuǎn)可完全重合的兩個三角形,并指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點,A(4,0),B(-4,0),D是y軸上的一個動點,∠ADC=90°(A、D、C按順時針方向排列), BC與經(jīng)過A、B、D三點的⊙M交于點E,DE平分∠ADC,連結(jié)AE,BD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.
(1)求證:ΔABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點D的坐標(biāo)為(0,8),求AE的長;
(4)BC交y軸于點N,問的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)過市場調(diào)查,整理出某種商品在第x(x≤90)天的售價與銷量的相關(guān)信息如右表.已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元.
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元件) | x+40 | 90 |
每天銷量(件) | 200-2x |
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.
(2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB= °
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com