(2008•宿遷)如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說明理由.

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)得到兩角一邊對(duì)應(yīng)相等,利用AAS判定△ABE≌△FCE,從而得到AB=CF;
(2)由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對(duì)角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E為BC的中點(diǎn),
∴EB=EC,
∴△ABE≌△FCE,
∴AB=CF.

(2)解:當(dāng)BC=AF時(shí),四邊形ABFC是矩形.
理由如下:∵AB∥CF,AB=CF,
∴四邊形ABFC是平行四邊形,
∵BC=AF,
∴四邊形ABFC是矩形.
點(diǎn)評(píng):此題主要考查了學(xué)生對(duì)全等三角形的判定,平行四邊形的性質(zhì)及矩形的判定等知識(shí)點(diǎn)的掌握情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2008•宿遷)如圖,⊙O的半徑為1,正方形ABCD頂點(diǎn)B坐標(biāo)為(5,0),頂點(diǎn)D在⊙O上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到與點(diǎn)A、O在同一條直線上時(shí),試證明直線CD與⊙O相切;
(2)當(dāng)直線CD與⊙O相切時(shí),求CD所在直線對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)點(diǎn)D的橫坐標(biāo)為x,正方形ABCD的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2008•宿遷)如圖,⊙O的半徑為1,正方形ABCD頂點(diǎn)B坐標(biāo)為(5,0),頂點(diǎn)D在⊙O上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到與點(diǎn)A、O在同一條直線上時(shí),試證明直線CD與⊙O相切;
(2)當(dāng)直線CD與⊙O相切時(shí),求CD所在直線對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)點(diǎn)D的橫坐標(biāo)為x,正方形ABCD的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2008•宿遷)如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=k2x+b的圖象交于A、B兩點(diǎn),A(2,n),B(-1,-2).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)在直線AB上是否存在一點(diǎn)P,使△APO∽△AOB?若存在,求P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省廣州市番禺區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•宿遷)如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=k2x+b的圖象交于A、B兩點(diǎn),A(2,n),B(-1,-2).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)在直線AB上是否存在一點(diǎn)P,使△APO∽△AOB?若存在,求P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省宿遷市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•宿遷)如圖,⊙O的半徑為1,正方形ABCD頂點(diǎn)B坐標(biāo)為(5,0),頂點(diǎn)D在⊙O上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到與點(diǎn)A、O在同一條直線上時(shí),試證明直線CD與⊙O相切;
(2)當(dāng)直線CD與⊙O相切時(shí),求CD所在直線對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)點(diǎn)D的橫坐標(biāo)為x,正方形ABCD的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案