請寫出一個開口向上,對稱軸為直線x=2,且與y軸的交點(diǎn)坐標(biāo)為(0,3)的拋物線的解析式 .
y=(x﹣2)2﹣1 .
【考點(diǎn)】待定系數(shù)法求二次函數(shù)解析式.
【專題】壓軸題;開放型.
【分析】已知拋物線的頂點(diǎn)或?qū)ΨQ軸時,常設(shè)其解析式為頂點(diǎn)式來求解.頂點(diǎn)式:y=a(x﹣h)2+k(a,h,k是常數(shù),a≠0),其中(h,k)為頂點(diǎn)坐標(biāo).
【解答】解:因?yàn)殚_口向上,所以a>0
∵對稱軸為直線x=2,
∴﹣=2
∵y軸的交點(diǎn)坐標(biāo)為(0,3),
∴c=3.
答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.
【點(diǎn)評】此題是開放題,考查了學(xué)生的綜合應(yīng)用能力,解題時要注意別漏條件.已知拋物線的頂點(diǎn)或?qū)ΨQ軸時,常設(shè)其解析式為頂點(diǎn)式來求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某市為爭創(chuàng)全國文明衛(wèi)生城,2012年市政府對市區(qū)綠化工程投入的資金是2000萬元,2014年投入的資金是2420萬元.
(1)求該市對市區(qū)綠化工程投入資金的年平均增長率;
(2)若投入資金的年平均增長率不變,那么該市在2015年需投入資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
我們在教材中已經(jīng)學(xué)習(xí)了:①等邊三角形;②矩形;③平行四邊形;④等腰三角形;⑤菱形.在以上五種幾何圖形中,既是軸對稱圖形,又是中心對稱圖形的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動點(diǎn).
(1)求這個二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ABPC的面積最大?求出此時P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在點(diǎn)Q處,EQ與BC交于點(diǎn)G,則△EBG的周長是 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com