【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等邊三角形,將四邊形ACBD沿直線(xiàn)EF折疊,使D與C重合,CE與CF分別交AB于點(diǎn)G、H.
(1)求證:△AEG∽△CHG;
(2)△AEG與△BHF是否相似,并說(shuō)明理由;
(3)若BC=1,求cos∠CHG的值.
【答案】(1)證明見(jiàn)解析(2)△AEG與△BHF相似 (3)
【解析】試題分析:(1)由于△ABD是等邊三角形,那么∠D=∠EAG=60°,根據(jù)折疊的性質(zhì)知:∠D=∠GCH=∠AEG=60°,再加上對(duì)頂角∠EGA=∠HGC,即可證得所求的三角形相似;
(2)由△ABD是等邊三角形和的性質(zhì)知:∠BAD=∠GCH=∠ABD,再由三角形內(nèi)角和定理可證明∠1=∠5,即可得到結(jié)論;
(3)在Rt△ABC中,已知了BC的長(zhǎng)和∠BAC的度數(shù),即可求得AB、AC的值,由折疊的性質(zhì)知:DE=CE,可設(shè)出DE、CE的長(zhǎng),然后表示出AE的長(zhǎng),進(jìn)而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可得到∠AEG的余弦值,而根據(jù)(1)的相似三角形知∠AEG=∠CHG,由此得解.
試題解析:解:(1)∵△ABD是等邊三角形,∴∠EAG=∠D=60°;
根據(jù)折疊的性質(zhì)知:DE=CE,∠D=∠GCH=∠EAG=60°,又∵∠EGA=∠HGC,∴△AEG∽△CHG.
(2)△AEG與△BHF相似.理由如下:
∵∠BAD=∠ABD=∠D,∠GCH=∠D,∴∠BAD=∠GCH=∠ABD,∴∠1+∠2=∠3+∠4.∵∠2=∠3,∠4=∠5,∴∠1=∠5, ∴△AEG∽△BHF;
(3)△ABC中,∠BAC=30°,BC=1,則AC=,AB=2,故AD=AB=2.
設(shè)DE=EC=x,則AE=2﹣x.
在Rt△AEC中,由勾股定理,得:(2﹣x)2+3=x2,解得x=,∴AE=,EC=,∴cos∠AEC==.由(1)的相似三角形知:∠AEG=∠CHG,故cos∠CHG=cos∠AEC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某織布廠(chǎng)有150名工人,為了提高經(jīng)濟(jì)效益,增設(shè)制衣項(xiàng)目,已知每人每天能織布30m,或利用所織布制衣4件,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項(xiàng)工作,且不計(jì)其他因素,設(shè)安排x名工人制衣.
(1)一天中制衣所獲利潤(rùn)P是多少(用含x的式子表示);
(2)一天中剩余布所獲利潤(rùn)Q是多少 (用含x的式子表示);.
(3)一天當(dāng)中安排多少名工人制衣時(shí),所獲利潤(rùn)為11806元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,
(1)若將△ABC 向右平移三個(gè)單位長(zhǎng)度得到△A1B1C1,則點(diǎn) A1 的坐標(biāo)為________
(2)若△ABC 與△A2B2C2 關(guān)于原點(diǎn) O 成中心對(duì)稱(chēng),則點(diǎn) A2 的坐標(biāo)________;
(3)畫(huà)出△ABC 繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°后的對(duì)應(yīng)圖形△A3B3C3,并寫(xiě)出 A3 的坐標(biāo)_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,與⊙O相交于G,F兩點(diǎn).
(1)求證:AB與⊙O相切;
(2)若AB=4,求線(xiàn)段GF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校準(zhǔn)備組織七年級(jí)400名學(xué)生參加北京夏令營(yíng),已知用3輛小客車(chē)和1輛大客車(chē)每次可運(yùn)送學(xué)生105人;用1輛小客車(chē)和2輛大客車(chē)每次可運(yùn)送學(xué)生110人;
(1)每輛小客車(chē)和每輛大客車(chē)各能坐多少名學(xué)生?
(2)若學(xué)校計(jì)劃租用小客車(chē)x輛,大客車(chē)y輛,一次送完,且恰好每輛車(chē)都坐滿(mǎn);
①請(qǐng)你設(shè)計(jì)出所有的租車(chē)方案;
②若小客車(chē)每輛需租金4000元,大客車(chē)每輛需租金7600元,請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明晚飯后外出散步,遇見(jiàn)同學(xué),交談一會(huì),返回途中在讀報(bào)廳看了一會(huì)報(bào).下圖是根據(jù)此情景畫(huà)出的圖象,請(qǐng)你回答下列問(wèn)題:
(1)小明在距家多遠(yuǎn)遇見(jiàn)同學(xué)的,交談了多少時(shí)間?
(2)讀報(bào)廳離家多遠(yuǎn)?
(3)小明在哪一段路程中走得最快,速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車(chē)在城街路上行駛速度不得超過(guò)70千米小時(shí),如圖,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車(chē)速檢測(cè)儀A的正前方60米處的C點(diǎn),過(guò)了5秒后,測(cè)得小汽車(chē)所在的B點(diǎn)與車(chē)速檢測(cè)儀A之間的距離為100米.
求BC間的距離;這輛小汽車(chē)超速了嗎?請(qǐng)說(shuō)明理由.
【答案】這輛小汽車(chē)沒(méi)有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車(chē)的時(shí)速,進(jìn)行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車(chē)沒(méi)有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車(chē)沒(méi)有超速.
【點(diǎn)睛】
考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線(xiàn)段AC和BD相交于點(diǎn)G,連接AB,CD,E是CD上一點(diǎn),F是DG上一點(diǎn),,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)l1:y=kx+b(k≠0)與x軸交于點(diǎn)A(3,O),與y軸交于點(diǎn)B(0,3), 直線(xiàn)l 2:y=2x與直線(xiàn)l1相交于點(diǎn)C.
(1)求直線(xiàn) l1 的解析式;
(2)求點(diǎn)C的坐標(biāo)和△AOC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com