【題目】在△ABC中,,邊上的高,則邊的長為( )

A. 4 B. 14 C. 4 或14 D. 8或14

【答案】C

【解析】

分兩種情況討論銳角三角形和鈍角三角形根據(jù)勾股定理求得BD,CD再由圖形求出BC,在銳角三角形中BC=BD+CD,在鈍角三角形中,BC=BDCD

1)如圖1,銳角△ABC,AB=15,AC=13,BC邊上高AD=12.在RtABDAB=15,AD=12,由勾股定理得BD2=AB2AD2=152122=81BD=9.在RtACDAC=13,AD=12,由勾股定理得CD2=AC2AD2=132122=25,CD=5,BC的長為BD+DC=9+5=14;

2如圖2鈍角△ABC,AB=15,AC=13BC邊上高AD=12.在RtABDAB=15,AD=12,由勾股定理得BD2=AB2AD2=152122=81,BD=9.在RtACDAC=13,AD=12由勾股定理得CD2=AC2AD2=132122=25,CD=5,BC的長為BDCD=95=4

綜上可得BC的長為144

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE,動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設(shè)點P的運動時間為t秒,當(dāng)t的值為__________秒時.△ABP△DCE全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在對角線AC上,EC=BC=DC.

(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON30°,點B1、B2、B3…和A1、A2、A3…分別在OMON上,且△A1B1A2、△A2B2A3、△A3B3A4、…分別為等邊三角形,已知OA11,則△A2018B2018A2019的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= 的圖象如圖,以下結(jié)論:
①m<0;
②在每個分支上y隨x的增大而增大;
③若點A(﹣1,a)、點B(2,b)在圖象上,則a<b;
④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上.
其中正確的個數(shù)是(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為踐行黨的群眾路線,六盤水市教育局開展了大量的教育教學(xué)實踐活動,如圖是其中一次“測量旗桿高度”的活動場景抽象出的平面幾何圖形.
活動中測得的數(shù)據(jù)如下:
①小明的身高DC=1.5m
②小明的影長CE=1.7cm
③小明的腳到旗桿底部的距離BC=9cm
④旗桿的影長BF=7.6m
⑤從D點看A點的仰角為30°
請選擇你需要的數(shù)據(jù),求出旗桿的高度.(計算結(jié)果保留到0.1,參考數(shù)據(jù) ≈1.414. ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,添加以下條件,不能判定的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= ,在下列結(jié)論中,不正確的是( )
A.圖象必經(jīng)過點(1,2)
B.y隨x的增大而減少
C.圖象在第一、三象限
D.若x>1,則y<2

查看答案和解析>>

同步練習(xí)冊答案