【題目】
(1)先求解下列兩題: ①如圖①,點(diǎn)B,D在射線AM上,點(diǎn)C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,AC∥x軸,點(diǎn)B,C的橫坐標(biāo)都是3,且BC=2,點(diǎn)D在AC上,且橫坐標(biāo)為1,若反比例函數(shù) 的圖象經(jīng)過點(diǎn)B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點(diǎn)?請(qǐng)簡單地寫出.

【答案】
(1)解:①∵AB=BC=CD=DE,

∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,

根據(jù)三角形的外角性質(zhì),∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,

又∵∠EDM=84°,

∴∠A+3∠A=84°,

解得,∠A=21°;

②∵點(diǎn)B在反比例函數(shù)y= 圖象上,點(diǎn)B,C的橫坐標(biāo)都是3,

∴點(diǎn)B(3, ),

∵BC=2,

∴點(diǎn)C(3, +2),

∵AC∥x軸,點(diǎn)D在AC上,且橫坐標(biāo)為1,

∴D(1, +2),

∵點(diǎn)D也在反比例函數(shù)圖象上,

+2=k,

解得,k=3


(2)解:用已知的量通過關(guān)系去表達(dá)未知的量,使用轉(zhuǎn)換的思維和方法.(開放題)
【解析】(1)①根據(jù)等邊對(duì)等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,計(jì)算即可求解;②先根據(jù)反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征表示出點(diǎn)B的坐標(biāo),再表示出點(diǎn)C的坐標(biāo),然后根據(jù)AC∥x軸可得點(diǎn)C、D的縱坐標(biāo)相同,從而表示出點(diǎn)D的坐標(biāo),再代入反比例函數(shù)解析式進(jìn)行計(jì)算即可得解.(2)從數(shù)學(xué)思想上考慮解答.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠B=90°,AB=6,BC=9,將ABC折疊,使點(diǎn)CAB的中點(diǎn)D重合,折痕交AC于點(diǎn)M,交BC于點(diǎn)N.

(1)求線段BN的長;

(2)連接CD,與MN交于點(diǎn)E,寫出與點(diǎn)E相關(guān)的兩個(gè)正確結(jié)論:①   ;

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
【合作學(xué)習(xí)】

如圖,矩形ABOD的兩邊OB,OD都在坐標(biāo)軸的正半軸上,OD=3,另兩邊與反比例函數(shù)y= (k≠0)的圖象分別相交于點(diǎn)E,F(xiàn),且DE=2.過點(diǎn)E作EH⊥x軸于點(diǎn)H,過點(diǎn)F作FG⊥EH于點(diǎn)G.回答下面的問題:
①該反比例函數(shù)的解析式是什么?
②當(dāng)四邊形AEGF為正方形時(shí),點(diǎn)F的坐標(biāo)是多少?
(1)閱讀合作學(xué)習(xí)內(nèi)容,請(qǐng)解答其中的問題;
(2)小亮進(jìn)一步研究四邊形AEGF的特征后提出問題:“當(dāng)AE>EG時(shí),矩形AEGF與矩形DOHE能否全等?能否相似?”
針對(duì)小亮提出的問題,請(qǐng)你判斷這兩個(gè)矩形能否全等?直接寫出結(jié)論即可;這兩個(gè)矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AB=2BC,現(xiàn)給出下列結(jié)論:①sinA= ;②cosB= ;③tanA= ;④tanB= ,其中正確的結(jié)論是(只需填上正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ADBCABEF,CDEG,且點(diǎn)E在直線AD,點(diǎn)FH,G在直線BC,EH平分FEG,∠A=∠D=110°,線段EH的長是不是兩條平行線AD,BC之間的距離?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將周長為8的△ABC沿BC方向平移1個(gè)單位得到△DEF,則四邊形ABFD的周長為(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點(diǎn)、,以線段為邊在第一象限內(nèi)作等腰直角三角形,則過、兩點(diǎn)的直線對(duì)應(yīng)的函數(shù)表達(dá)式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),∠A=80°,BO、CO分別是∠ABC∠ACB的角平分線,則∠BOC等于( 。

A. 140° B. 120° C. 130° D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式的化簡后,遇到了這樣一個(gè)需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+(2=(1+2.于是==1+.善于思考的小明繼續(xù)深入探索;當(dāng)a+b=(m+n2時(shí)(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時(shí),a=m2+2n2,b=2mn,于是,=m+n.請(qǐng)你仿照小明的方法探索并解決下列問題:

(1)設(shè)a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時(shí),結(jié)果是a=   ,b=   ;

(2)利用(1)中的結(jié)論,選擇一組正整數(shù)填空:=   +   ;

(3)化簡:

查看答案和解析>>

同步練習(xí)冊(cè)答案