如圖,已知P是等邊△ABC內(nèi)任意一點(diǎn),過點(diǎn)P分別向三邊作垂線,垂足分別是D、E、F,試證明PD+PE+PF是不變的值.

答案:略
解析:

證明:過點(diǎn)AAHBCH,連接PAPB、PC

,

又∵AB=BC=AC,

AH=PDPEPF

PDPEPF的值是等邊△ABC的高,是不變的值.


提示:

由于△ABC是等邊三角形,故它的三邊AB=BC=AC,而PD、PE、PF恰好是這三邊上的高,因此本題可想到用三角形的面積法解題.連接PA、PB、PC,把△ABC分成了三個三角形△PAB、△PBC、△PAC,這三個三角形面積的和正好等于等邊△ABC的面積,由面積之間的關(guān)系即可說明PDPEPF等于△ABC的高,即為定值.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A是等邊三角形PQR的邊RQ的延長線上的點(diǎn),B是QR延長線上的點(diǎn),
(1)若∠1+∠2=60°,求證:QR2=AQ•BR.
(2)若AQ=
12
QR
,當(dāng)RB與QR滿足什么條件時,△BRP∽△PQA?
(3)△BPQ有可能與△PQA相似嗎?若可能相似,說明應(yīng)滿足什么條件;若不可能相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長線上的一個動點(diǎn),以AD為邊作等邊△ADE,過點(diǎn)E作BC的平行線,分別交AB,AC的延長線于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O是等邊三角形△ABC內(nèi)一點(diǎn),∠AOB、∠BOC、∠AOC的度數(shù)之比為6:5:4,在以O(shè)A、OB、OC為邊的三角形中,此三邊所對的角的度數(shù)是
36°或60°或84°
36°或60°或84°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知P是等邊△ABC內(nèi)的一點(diǎn),連接AP、BP,將△ABP旋轉(zhuǎn)后能與△CBP′重合,根據(jù)圖形回答:(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)角是幾度?
(3)連接PP′后,△BPP′是什么三角形?

查看答案和解析>>

同步練習(xí)冊答案