【題目】過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
【答案】(1)證明見解析;(2).
【解析】
(1)由矩形的性質(zhì)可得∠ACB=∠DAC,然后利用“ASA”證明△AOF和△COE全等,根據(jù)全等三角形對應(yīng)邊相等可得OE=OF,即可證四邊形AECF是菱形;
(2)由菱形的性質(zhì)可得:菱形AECF的面積=EC×AB=AC×EF,進而得到EF的長.
解:(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中點,
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,且AO=CO,
∴四邊形AECF是平行四邊形,
又∵EF⊥AC,
∴四邊形AECF是菱形;
(2)∵菱形AECF的面積=EC×AB=AC×EF,
又∵AB=6,AC=10,EC=,
∴×6=×10×EF,
解得EF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=3cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,如果P、Q兩點同時出發(fā)。
(1)幾秒鐘后,P、Q間的距離等于4cm?
(2)幾秒種后,△BPQ的面積與四邊形CQPA的面積相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對于任意兩點 (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點 與點 的“非常距離”為 ;若 ,則點 與點的“非常距離”為 .
例如:點 (1,2),點 (3,5),因為 ,所以點 與點 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長度的較大值(點 Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點)。
(1)已知點 A(-,0), B為 y軸上的一個動點,①若點 A與點 B的“非常距離”為2,寫出一個滿足條件的點 B的坐標(biāo);②直接寫出點 A與點 B的“非常距離”的最小值;
(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標(biāo)是(0,1),求點 C與點 D的“非常距離”的最小值及相應(yīng)的點 C的坐標(biāo); ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E的“非常距離”的最小值及相應(yīng)的點 E和點 C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點E為正方形ABCD的邊AB上一點,EF⊥EC,且EF=EC,連接AF.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.求證:BD=AF+2DM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點A(3,0)、B(-5,3),將點A向左平移6個單位到達C點,將點B向下平移6個單位到達D點.
(1)寫出C點、D點的坐標(biāo):C __________,D ____________ ;
(2)把這些點按A-B-C-D-A順次連接起來,這個圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+3交x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點A,C,D的坐標(biāo);
(2)動點P在BD上以每秒2個單位長的速度由點B向點D運動,同時動點Q在CA上以每秒3個單位長的速度由點C向點A運動,當(dāng)其中一個點到達終點停止運動時,另一個點也隨之停止運動,設(shè)運動時間為t秒.PQ交線段AD于點E.
①當(dāng)∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當(dāng)PN=EM時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com