【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C、D兩點,點E為⊙G上一動點,CFAEF,當點EB點出發(fā)順時針運動到D點時,點F經(jīng)過的路徑長為______

【答案】

【解析】

連接ACAG,OG垂直于AB,利用垂徑定理得到OAB的中點,G的坐標確定出OG的長,在直角三角形AOG,利用勾股定理求出AO的長進而確定出AB的長,CG+GO求出OC的長在直角三角形AOC,利用勾股定理求出AC的長,CF垂直于AE,得到三角形ACF始終為直角三角形,F的運動軌跡為以AC為直徑的半徑,如圖中紅線所示E位于點B,COAE,此時FO重合;E位于D,CAAE,此時FA重合,可得出當點E從點B出發(fā)順時針運動到點DF所經(jīng)過的路徑長,在直角三角形ACO,利用銳角三角函數(shù)定義求出∠ACO的度數(shù)進而確定出所對圓心角的度數(shù),再由AC的長求出半徑,利用弧長公式即可求出的長

連接ACAG

GOAB,∴OAB的中點AOBOAB

G(0,1),OG=1,∴在Rt△AOG根據(jù)勾股定理得AO,∴AB=2AO=2COCG+GO=2+1=3,∴在Rt△AOC根據(jù)勾股定理得AC

CFAE,∴△ACF始終是直角三角形,F的運動軌跡為以AC為直徑的半圓,E位于點B,COAE,此時FO重合;E位于D,CAAE此時FA重合,∴當點E從點B出發(fā)順時針運動到點DF所經(jīng)過的路徑長.在Rt△ACO,tan∠ACO,∴∠ACO=30°,∴度數(shù)為60°.

∵直徑AC=2,∴的長為π,則當點E從點B出發(fā)順時針運動到點DF所經(jīng)過的路徑長π

故答案為:π

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由兩個可以自由轉動的轉盤、每個轉盤被分成如圖所示的幾個扇形、游戲者同時轉動兩個轉盤,如果一個轉盤轉出了紅色,另一轉盤轉出了藍色,游戲者就配成了紫色下列說法正確的是( 。

A. 兩個轉盤轉出藍色的概率一樣大

B. 如果A轉盤轉出了藍色,那么B轉盤轉出藍色的可能性變小了

C. 先轉動A 轉盤再轉動B 轉盤和同時轉動兩個轉盤,游戲者配成紫色的概率不同

D. 游戲者配成紫色的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一元二次方程,下列說法:①若a+c=0,方程有兩個不等的實數(shù)根;②若方程有兩個不等的實數(shù)根,則方程也一定有兩個不等的實數(shù)根;③若c是方程的一個根,則一定有成立;④若m是方程的一個根,則一定有成立.其中正確地只有 ( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:

甲:88,78,9

乙:59,710,9

1)填寫下表:

平均數(shù)

眾數(shù)

中位數(shù)

方差


8


8

0.4



9


3.2

2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?

3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填變大、變小不變).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點Py軸的正半軸上,⊙Px軸于B、C兩點,以AC為直角邊作等腰RtACD,BD分別交y軸和⊙PEF兩點,連接ACFC

(1)求證:∠ACF=ADB;

(2)若點ABD的距離為m,BF+CF=n,求線段CD的長;

(3)當⊙P的大小發(fā)生變化而其他條件不變時,的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=6 cm,BC=12 cm,點P從點A沿邊AB向點B1 cm/s的速度移動;同時點Q從點B沿邊BC向點C2 cm/s的速度移動,設運動時間為t s.問:

(1)幾秒后PBQ的面積等于8 cm2?

(2)是否存在t,使PDQ的面積等于26 cm2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點D,E,BC的延長線與⊙O的切線AF交于點F

(1)求證:∠ABC=2CAF;

(2)若AC=2,CEEB=1:4,求CEAF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4張正面分別標有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個被均勻分成4份的轉盤,上面分別標有數(shù)字,轉動轉盤,指針所指的數(shù)字記為(若指針指在分割線上則重新轉一次),則點在拋物線軸所圍成的區(qū)域內(不含邊界)的概率是__________

查看答案和解析>>

同步練習冊答案