為了改善市民的生活環(huán)境,我是在某河濱空地處修建一個(gè)如圖所示的休閑文化廣場.在Rt△ABC內(nèi)修建矩形水池DEFG,使頂點(diǎn)D、E在斜邊AB上,F(xiàn)、G分別在直角邊BC、AC上;又分別以AB、BC、AC為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設(shè)地磚.其中米,∠BAC=600.設(shè)EF=x米,DE=y米.
(1)求y與x之間的函數(shù)解析式;
(2)當(dāng)x為何值時(shí),矩形DEFG的面積最大?最大面積是多少?
(3)求兩彎新月(圖中陰影部分)的面積,并求當(dāng)x為何值時(shí),矩形DEFG的面積等于兩彎新月面積的?
(1)(0<x<8)(2)(3)米時(shí)
【解析】解:(1)在Rt△ABC中,由題意得AC=米,BC=36米,∠ABC=300,
∴AB=,。
又∵AD+DE+BE=AB,∴DE=AB-AD-BE。
∴(0<x<8)。
(2)∵矩形DEFG的面積,
∴當(dāng)x=9時(shí),矩形DEFG的面積最大,最大面積為平方米。
(3)記AC為直徑的半圓、BC為直徑的半圓、AB為直徑的半圓面積分別為S1、S2、S3,兩彎新月面積為S,則
由AC2+BC2=AB2可知S1+S2=S3,∴。故S=S△ABC。
∴兩彎新月的面積S=(平方米)。
由得,解得,符合題意。
∴當(dāng)米時(shí),矩形DEFG的面積等于兩彎新月面積的。
(1)應(yīng)用銳角三角函數(shù),將AD,BE用x來表示,由DE=AB-AD-BE列式即得y與x之間的函數(shù)解析式。
(2)求出矩形DEFG面積的函數(shù)表達(dá)式,應(yīng)用二次函數(shù)最值原理求解即可。
(3)應(yīng)用轉(zhuǎn)換思想,由S兩彎新月=S△ABC,根據(jù)矩形DEFG的面積等于兩彎新月面積的列方程求解即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(帶解析) 題型:解答題
為了改善市民的生活環(huán)境,我是在某河濱空地處修建一個(gè)如圖所示的休閑文化廣場.在Rt△ABC內(nèi)修建矩形水池DEFG,使頂點(diǎn)D、E在斜邊AB上,F(xiàn)、G分別在直角邊BC、AC上;又分別以AB、BC、AC為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設(shè)地磚.其中米,∠BAC=600.設(shè)EF=x米,DE=y米.
(1)求y與x之間的函數(shù)解析式;
(2)當(dāng)x為何值時(shí),矩形DEFG的面積最大?最大面積是多少?
(3)求兩彎新月(圖中陰影部分)的面積,并求當(dāng)x為何值時(shí),矩形DEFG的面積等于兩彎新月面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com