【題目】如圖,中,,,面積為150

1)尺規(guī)作圖:作的平分線交于點(diǎn);(不要求寫(xiě)作法,保留作圖痕跡)

2)在(1)的條件下,求出點(diǎn)到兩條直角邊的距離.

【答案】1)見(jiàn)解析;(2

【解析】

1)利用尺規(guī)作圖的步驟作出∠ACB的平分線交AB于點(diǎn)D即可;
2)作E,F,根據(jù)面積求出BC的長(zhǎng).法一:根據(jù)角平分線的性質(zhì)得出DE=DF,從而得出四邊形CEDF為正方形.再由,得出,列方程可以求出結(jié)果;法二:根據(jù),利用面積法可求得DE,DF的值.

解:(1)∠ACB的平分線CD如圖所示:

2)已知,面積為150,∴.

法一:作,,

角平分線,

,,而,

∴四邊形為正方形.

設(shè),則由

,∴.

,得.

∴點(diǎn)到兩條直角邊的距離為.

法二:,

又由(1)知AC=15,BC=20

,

.

故點(diǎn)到兩條直角邊的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2014年以來(lái),某縣加大了教育經(jīng)費(fèi)的投入,2014年該縣投入教育經(jīng)費(fèi)6000萬(wàn)元。2016年投入教育經(jīng)費(fèi)8640萬(wàn)元。假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率相同。

1求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

2若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長(zhǎng)率,請(qǐng)你預(yù)算2017年該縣投入教育經(jīng)費(fèi)多少萬(wàn)元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4,點(diǎn)E、F分別在BC、CD上,若AE=,EAF=45°,則AF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一根長(zhǎng)為米的鐵絲折成一個(gè)矩形,矩形的一邊長(zhǎng)為米,面積為S,

(1)S關(guān)于的函數(shù)表達(dá)式和的取值范圍

(2)為何值時(shí),S最大?最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,點(diǎn)是直線上動(dòng)點(diǎn),以為邊作正方形,所在直線與所在直線交于點(diǎn),連接

1)如圖1,當(dāng)點(diǎn)邊上時(shí),延長(zhǎng)于點(diǎn),交于點(diǎn),連接

①求證:

②若,求的值;

2)當(dāng)正方形的邊長(zhǎng)為4時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),連接BE,CD,F(xiàn)BE的中點(diǎn),連接AF.

(1)如圖①,當(dāng)∠BAE=90°時(shí),求證:CD=2AF;

(2)當(dāng)∠BAE≠90°時(shí),(1)的結(jié)論是否成立?請(qǐng)結(jié)合圖②說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.

(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;

(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】裝潢公司要給邊長(zhǎng)為6米的正方形墻面ABCD進(jìn)行裝潢,設(shè)計(jì)圖案如圖所示(四周是四個(gè)全等的矩形,用材料甲進(jìn)行裝潢;中心區(qū)是正方形MNPQ,用材料乙進(jìn)行裝潢).

兩種裝潢材料的成本如下表:

材料

價(jià)格(元/2

50

40

設(shè)矩形的較短邊AH的長(zhǎng)為x米,裝潢材料的總費(fèi)用為y元.

1MQ的長(zhǎng)為   米(用含x的代數(shù)式表示);

2)求y關(guān)于x的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備資金1760元購(gòu)買(mǎi)材料一定夠用嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示矩形中,,滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形的斜邊過(guò)點(diǎn),點(diǎn),分別在,上,的中點(diǎn),則下列結(jié)論正確的是(

A.當(dāng)時(shí),

B.當(dāng)時(shí),

C.當(dāng)增大時(shí),的值增大

D.當(dāng)增大時(shí),的值不變

查看答案和解析>>

同步練習(xí)冊(cè)答案