如圖,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于點E,將△ADE沿直線DE折疊,點A落在F處,DF交BC于點G.
(1)用含有x的代數(shù)式表示BF的長.
(2)設(shè)四邊形DEBG的面積為S,求S與x的函數(shù)關(guān)系式.
(3)當(dāng)x為何值時,S有最大值,并求出這個最大值.
[參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點坐標(biāo)為(-,)].

【答案】分析:(1)根據(jù)等式BF=AF-AB=2AE-AB=2DE-AB=2BC-AB,用含x的代數(shù)式表示BF的長;
(2)根據(jù)等量關(guān)系“S=S△DEF-S△GBF”列出S與x的函數(shù)關(guān)系式;
(3)根據(jù)(2)中的函數(shù)關(guān)系式和x的取值范圍求S的最大值.
解答:解:(1)由題意,得EF=AE=DE=BC=x,AB=30,
∴BF=2x-30.

(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,
∴∠BGF=∠F=45°.
∴BG=BF=2x-30,
∴S=
=
=

(3)S=
,15<20<30,
∴當(dāng)x=20時,S有最大值,最大值為150
點評:本題考查的是函數(shù)關(guān)系式的求法以及求最大值的問題,但需注意自變量的變化范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊答案