【題目】為了方便居民低碳出行,聊城市公共自行車租賃系統(tǒng)(一期)試運行.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長;
(2)求點E到AB的距離.(精確到0.1cm,參考數(shù)據:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

【答案】
(1)解:在Rt△ADF中,由勾股定理得,

AD= = =15(cm)


(2)解:AE=AD+CD+EC=15+30+15=60(cm),

如圖②,過點E作EH⊥AB于H,

在Rt△AEH中,sin∠EAH= ,

則EH=AEsin∠EAH=ABsin75°≈60×0.97=58.2(cm).

答:點E到AB的距離為58.2 cm.


【解析】(1)根據勾股定理求出AD的長;(2)作EH⊥AB于H,求出AE的長,根據正弦的概念求出點E到車架AB的距離.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】完成推理過程

如圖,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求證:AE=CF.

證明∵AB∥DC,

∴∠1=

∵AE⊥BD,CF⊥BD,

∴∠AEB=

∵BF=DE,

∴BF﹣EF=DE﹣EF

=

∴△ABE≌△CDF

∴AE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,F(xiàn)O⊥AB,垂足為點O,連接AF并延長交⊙O于點D,連接OD交BC于點E,∠B=30°,F(xiàn)O=2
(1)求AC的長度;
(2)求圖中陰影部分的面積.(計算結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用計算器計算:

(1)π-(精確到0.01);

(2) (精確到0.001);

(3)4(精確到0.1);

(4)+()(精確到0.01).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800/分的速度勻速從乙地到甲地,兩人距離乙地的路程y()與小張出發(fā)后的時間x()之間的函數(shù)圖象如圖所示.

(1)求小張騎自行車的速度;

(2)求小張停留后再出發(fā)時yx之間的函數(shù)表達式;

(3)求小張與小李相遇時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ +bx+c圖象經過A(﹣1,0),B(4,0)兩點.

(1)求拋物線的解析式;
(2)若C(m,m﹣1)是拋物線上位于第一象限內的點,D是線段AB上的一個動點(不與A、B重合),過點D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②試探究:在點D運動過程中,DE、DF、CF的長度之和是否發(fā)生變化?若不變,求出它的值,若變化,試說明變化情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知某船于上午8時在A處觀測小島C在北偏東60°方向上,該船以每小時20海里的速度向東航行到B處,測得小島C在北偏東30°方向上,船以原來的速度繼續(xù)向東航行2小時,到達島C正南方點D處,船從AD一共航行了多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為Rt△ABC斜邊AB上一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,AABC的三個頂點坐標為A(一3,4),B(一4,2),C(一2,1),ΔABC繞原點順時針旋轉90°,得到△A1B1C1,ΔA1B1C1向左平移2個單位,再向下平移5個單位得到△A2B2C2

(1)畫出ΔA1B1Cl和△A2B2C2

(2)P(ab)是AABCAC邊上一點,ΔABC經旋轉、平移后點P的對應點分別為P1、P2,請寫出點P1、P2的坐標.

查看答案和解析>>

同步練習冊答案