(2009•山西)如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為( )

A.
B.
C.
D.
【答案】分析:根據相似三角形的判定方法可得到△ABC∽△DOA,再根據相似比即可求得BC的長.
解答:解:∵BC∥OD
∴∠B=∠AOD
∵∠C=∠OAD
∴△ABC∽△DOA
∴BC:OA=AB:OD
∴BC=.故選A.
點評:本題主要考查的知識點有相似三角形的性質及判定、圓周角定理的推論、切線的性質、平行線的性質的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•山西)如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省溫州市永嘉縣中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•山西)如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖南省郴州市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•山西)如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市數(shù)學一模解密預測試卷(二)(解析版) 題型:解答題

(2009•山西)如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山西省中考數(shù)學試卷(解析版) 題型:解答題

(2009•山西)如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

同步練習冊答案