【題目】已知關(guān)于x的一元二次方程x2+2x+a﹣2=0.

(1)若該方程有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;

(2)設(shè)方程兩根為x1,x2是否存在實(shí)數(shù)a,使?若存在求出實(shí)數(shù)a,若不存在,請說明理由.

【答案】(1)a<3;(2)不存在實(shí)數(shù)a,使成立.

【解析】

試題分析:(1)根據(jù)判別式的意義得到=22﹣4×(a﹣2)>0,然后解不等式即可;

(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=﹣2,x1x2=a﹣2,利用x12+x22=1得到(x1+x22﹣2x1x2=1,即可得到ad的值,然后解出a的值后利用(1)中的條件進(jìn)行判斷.

解:(1)b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,

解得:a<3.

a的取值范圍是a<3;

(2)由根與系數(shù)的關(guān)系得:x1+x2=﹣2,x1x2=a﹣2,

,

有(﹣2)2﹣2(a﹣2)=1,

,

,

不存在實(shí)數(shù)a,使成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長交CD的延長線于點(diǎn)F.

(1)請連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式由左邊到右邊的變形中,是分解因式的為( 。

A. ax+y)=ax+ay B. x2-4x+4=xx-4)+4

C. 10x2-5x=5x2x-1 D. x2-16+3x=x-4(x+4)+3x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=10,BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F恰好為DC的中點(diǎn),DGAE,垂足為G.若DG=3,則AE的邊長為(

A2 B4 C8 D16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)“東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機(jī)抽簽方式.

(1)請直接寫出第一位出場是女選手的概率;

(2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結(jié)果,并求出他們都是男選手的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊長方形區(qū)域,而且這三塊長方形區(qū)域的面積相等.設(shè)BC的長度為xm,AB為ym.

(1)求y與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;

(2)當(dāng)BC為多長時,長方形面積達(dá)300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O中,弦AB=AC,點(diǎn)P是BAC所對弧上一動點(diǎn),連接PB、PA.

)如圖①,把ABP繞點(diǎn)A逆時針旋轉(zhuǎn)到ACQ,求證:點(diǎn)P、C、Q三點(diǎn)在同一直線上.

)如圖②,若BAC=60°,試探究PA、PB、PC之間的關(guān)系.

)若BAC=120°時,(2)中的結(jié)論是否成立?若是,請證明;若不是,請直接寫出它們之間的數(shù)量關(guān)系,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;

(3)過點(diǎn)B作BCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決江北學(xué)校學(xué)生上學(xué)過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行河岸AB與MN之間的距離).在測量時,選定河對岸MN上的點(diǎn)C處為橋的一端,在河岸點(diǎn)A處,測得CAB=30°,沿河岸AB前行30米后到達(dá)B處,在B處測得CBA=60°,請你根據(jù)以上測量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案