【題目】如圖,把矩形OABC放入平面直角坐標(biāo)系xO中,使OA、OC分別落在xy軸的正半軸上,其中AB15,對(duì)角線AC所在直線解析式為y=﹣x+b,將矩形OABC沿著BE折疊,使點(diǎn)A落在邊OC上的點(diǎn)D處.

1)求點(diǎn)B的坐標(biāo);

2)求EA的長度;

3)點(diǎn)Py軸上一動(dòng)點(diǎn),是否存在點(diǎn)P使得PBE的周長最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】1B9,15);(25;(3)存在,P0,

【解析】

1)根據(jù)點(diǎn)C的坐標(biāo)確定b的值,利用待定系數(shù)法求出點(diǎn)A坐標(biāo)即可解決問題;

2)在Rt△BCD中,BC9,BDAB15,CD12OD15123,設(shè)DEAEx,在Rt△DEO中,根據(jù)DE2OD2+OE2,構(gòu)建方程即可解決問題;

3)如圖作點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)E,連接BEy軸于P,此時(shí)BPE的周長最。么ㄏ禂(shù)法求出直線BE的解析式即可解決問題;

解:(1AB15,四邊形OABC是矩形,

OCAB15,

C015),代入yy=﹣x+b得到b15,

直線AC的解析式為y=﹣x+15,

y0,得到x9,

A9,0),B9,15).

2)在Rt△BCD中,BC9,BDAB15,

CD12,

OD15123,

設(shè)DEAEx,

Rt△DEO中,DE2OD2+OE2,

x232+9x2,

x5,

AE5

3)如圖作點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)E,連接BEy軸于P,此時(shí)BPE的周長最。

E4,0),

E(﹣4,0),

設(shè)直線BE的解析式為ykx+b,則有

解得,

直線BE的解析式為yx+,

P0).

故答案為:(1B9,15);(25;(3)存在,P0,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2-5x+c的圖象如圖所示.

(1)試求該二次函數(shù)的解析式和它的圖象的頂點(diǎn)坐標(biāo);

(2)觀察圖象回答,x何值時(shí)y的值大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某乳品公司向某地運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克需運(yùn)費(fèi)0.60元,由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.30元,另需補(bǔ)助600元

(1)設(shè)該公司運(yùn)輸?shù)倪@批牛奶為x千克,選擇鐵路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y1元,選擇公路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y2元,請(qǐng)分別寫出y1、y2與x之間的關(guān)系式;

(2)若公司只支出運(yùn)費(fèi)1500元,則選用哪種運(yùn)輸方式運(yùn)送的牛奶多?若公司運(yùn)送1500千克牛奶,則選用哪種運(yùn)輸方式所需費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某商場用2500元購進(jìn)了A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià),標(biāo)價(jià)如下表所示:

(1)這兩種臺(tái)燈各購進(jìn)多少盞?

(2)若A型臺(tái)燈按標(biāo)價(jià)的九折出售,B型臺(tái)燈按標(biāo)價(jià)的八折出售,那么這批臺(tái)燈全部售完后,商場共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,數(shù)軸上,點(diǎn)的初始位置表示的數(shù)為,現(xiàn)點(diǎn)做如下移動(dòng),1次點(diǎn)向左移動(dòng)3個(gè)單位長度至點(diǎn),第2次從點(diǎn)向右移動(dòng)6個(gè)單位長度至點(diǎn),第次從點(diǎn)向左移動(dòng)個(gè)單位長度至點(diǎn),…,按照這種移動(dòng)方式進(jìn)行下云,如果點(diǎn)與原點(diǎn)的距離不小于,那么的最小值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求作圖.

1)如圖1,平行四邊形ABCD,點(diǎn)E,F分別在邊AD,BC上,且AECF,連接EF.請(qǐng)你只用無刻度直尺畫出線段EF的中點(diǎn)O.(保留畫圖痕跡,不必說明理由).

2)如圖2,平行四邊形ABCD,點(diǎn)E在邊AB上,請(qǐng)你只用無刻度直尺在邊CD上找一點(diǎn)F,使得四邊形AECF為平行四邊形,并說明理由.(注意:無刻度直尺只能過點(diǎn)畫線段或直線或射線).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是邊長為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD1,以AD為邊作等邊△ADE,過點(diǎn)EEFBC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中ABD≌△BCF四邊形BDEF是平行四邊形;S四邊形BDEF;SAEF.其中正確的有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻使得?若存在,請(qǐng)求出此時(shí)點(diǎn)表示的數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),直線y=x+2分別與x軸、y軸交于點(diǎn)A、C.拋物線y=﹣+bx+c經(jīng)過點(diǎn)A與點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.點(diǎn)D在該拋物線上,且位于直線AC的上方.

(1)求上述拋物線的表達(dá)式;

(2)聯(lián)結(jié)BC、BD,且BDAC于點(diǎn)E,如果ABE的面積與ABC的面積之比為4:5,求∠DBA的余切值;

(3)過點(diǎn)DDFAC,垂足為點(diǎn)F,聯(lián)結(jié)CD.若CFDAOC相似,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案