【題目】反比例函數(shù)(k≠0)與二次函數(shù)y=2x2+kx-k的圖象可能是( )

A. B.

C. D.

【答案】B

【解析】

首先根據(jù)反比例函數(shù)所在象限確定k的符號,再根據(jù)k的符號確定拋物線的開口方向和對稱軸,即可選出答案.

解:A、反比例函數(shù)(k≠0)的圖象經(jīng)過第一、三象限,則k0,此時函數(shù)y=x2+kx-k的對稱軸為y=-0,對稱軸在y軸的左側(cè),與所示圖象不符,故本選項錯誤;
B、反比例函數(shù)y=k≠0)的圖象經(jīng)過第一、三象限,則k0,此時函數(shù)y=x2+kx-k的對稱軸為y=-0,對稱軸在y軸的左側(cè),-k0,與y軸交于負半軸,與所示圖象相符,故本選項正確;
C、反比例函數(shù)y=k≠0)的圖象經(jīng)過第二、四象限,則k0,此時函數(shù)y=x2+kx-k的對稱軸為y=-0,對稱軸在y軸的右側(cè),與所示圖象不符,故本選項錯誤;
D、反比例函數(shù)y=k≠0)的圖象經(jīng)過第二、四象限,則k0,此時,-k0,函數(shù)y=x2+kx-k的與y軸交于正半軸,與所示圖象不符,故本選項錯誤;
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,對角線ACBD相交于點O,且對角線AC平分∠BCD,∠ACD30°,BD6

1)求證:△BCD是等邊三角形;(2)求AC的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線BDAD,ECD上一點,連接AEBD于點F,GAF的中點,連接DG

1)如圖1,若DG=DF=1,BF=3,求CD的長;

2)如圖2,連接BE,且BE=AD,∠AEB=90°,M、N分別為DG,BD上的點,且DM=BN,HAB的中點,連接HM、HN,求證:∠MHN=AFB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖:

請你根據(jù)統(tǒng)計圖回答下列問題:

(1)喜歡乒乓球的學生所占的百分比是多少?并請補全條形統(tǒng)計圖;

(2)請你估計全校500名學生中最喜歡“排球”項目的有多少名?

(3)在扇形統(tǒng)計圖中,“籃球”部分所對應的圓心角是多少度?

(4)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,ABBD,CDBDAPPC,垂足分別為BP、D,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

1)證明:ABCD=PBPD

2)如圖乙,也是一個“三垂圖”,上述結(jié)論成立嗎?請說明理由.

3)已知拋物線與x軸交于點A-10),B3,0),與y軸交于點(0,-3),頂點為P,如圖丙所示,若Q是拋物線上異于A、B、P的點,使得∠QAP=90°,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標MN,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結(jié)果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構成一個四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,菱形ABCD中,E、F分別是CDCB上的點,且CECF

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

查看答案和解析>>

同步練習冊答案