如圖,在△ABC中,AB=2,AC="BC=" 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=" 3" ,y4="-" 3 .
所以,原方程的解是y1=1,y2=-1,y3=" 3" ,y4="-" 3 .
再如 ,可設 ,用同樣的方法也可求解.
解:(1)∵AB的垂直平分線為y軸,
∴OA=OB=AB=×2=1,
∴A的坐標是(-1,0),B的坐標是(1,0).
在直角△OAC中,,
則C的坐標是:(0,2);
(2)設拋物線的解析式是:y=ax2+b,
根據題意得: ,解得: ,
則拋物線的解析式是:;
(3)∵S△ABC=AB•OC=×2×2=2,
∴S△ABD=S△ABC=1.
設D的縱坐標是m,則AB•|m|=1,
則m=±1.
當m=1時,-2x2+2=1,解得:x=±,
當m=-1時,,-2x2+2=-1,解得:x=± ,
則D的坐標是:(,1)或(- ,1)或(,-1),或(- ,-1).
(4)設拋物線向右平移c個單位長度,則0<c≤1,OA′=1-c,OB′=1+c.
平移以后的拋物線的解析式是:y=-2(x-c)2+b.
令x=0,解得y=-2c2+2.即OC′= -2c2+2.
當點C′同時在以A′B′為直徑的圓上時有:OC′2=OA′•OB′,
則(-2c2+2)2=(1-c)(1+c),
即(4c2-3)(c2-1)=0,
解得:c= ,(舍去),1,(舍去).
故平移 或1個單位長度.
解析
科目:初中數學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com