已知二次函數(shù)y=ax2+bx+c的圖象G和x軸有且只有一個(gè)交點(diǎn)A,與y軸的交點(diǎn)為B(0,4),且ac=b.
(1)求該二次函數(shù)的解析表達(dá)式;
(2)將一次函數(shù)y=-3x的圖象作適當(dāng)平移,使它經(jīng)過(guò)點(diǎn)A,記所得的圖象為L(zhǎng),圖象L與G的另一個(gè)交點(diǎn)為C,求△ABC的面積.

解:(1)由B(0,4)得,c=4.
G與x軸的交點(diǎn)A(,0),
由條件ac=b,得=,
即A(-2,0).
所以
解得
所求二次函數(shù)的解析式為y=x2+4x+4.

(2)設(shè)圖象L的函數(shù)解析式為y=-3x+b,
因圖象L過(guò)點(diǎn)A(-2,0),
所以b=-6,
即平移后所得一次函數(shù)的解析式為
y=-3x-6.
令-3x-6=x2+4x+4,
解得x1=-2,x2=-5.
將它們分別代入y=-3x-6,
得y1=0,y2=9.
所以圖象L與G的另一個(gè)交點(diǎn)為C(-5,9).
如圖,過(guò)C作CD⊥x軸于D,
則S△ABC=S梯形BCDO-S△ACD-S△ABO
=(4+9)×5-×3×9-×2×4=15.
分析:(1)根據(jù)二次函數(shù)與x軸只有一個(gè)交點(diǎn),可得出△=0,然后將B點(diǎn)坐標(biāo)代入拋物線,聯(lián)立△=0和ac=b即可求出拋物線的解析式.
(2)根據(jù)拋物線的解析式可求出A點(diǎn)的坐標(biāo),設(shè)出平移后的直線的解析式,然后將A點(diǎn)坐標(biāo)代入即可求出平移后圖象L的解析式,然后聯(lián)立直線L和拋物線G即可求出C點(diǎn)的坐標(biāo).由于△ABC的面積無(wú)法直接求出,可轉(zhuǎn)換成其他規(guī)則圖形面積的和差來(lái)求解.
過(guò)C作x軸的垂線,可通過(guò)S△ABC=S梯形OBCD-S△CAD-S△OBA來(lái)求出△ABC的面積.
點(diǎn)評(píng):命題立意:考查二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
點(diǎn)評(píng):(1)函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.
(2)不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫(xiě)出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫(xiě)出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說(shuō)法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案