隨著海峽兩岸交流日益增強(qiáng),通過“零關(guān)稅”進(jìn)入我市的一種臺(tái)灣水果,其進(jìn)貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)是每噸的銷售價(jià)x(萬元)的一次函數(shù),且x=0.6時(shí),y=2.4;x=1時(shí),y=2.
(1)求出銷售量y(噸)與每噸的銷售價(jià)x(萬元)之間的函數(shù)關(guān)系式;
(2)若銷售利潤為w(萬元),請(qǐng)寫出w與x之間的函數(shù)關(guān)系式,并求出銷售價(jià)為每噸2萬元時(shí)的銷售利潤.

(1)設(shè)y=kx+b
∵已知x=0.6時(shí),y=2.4;x=1時(shí),y=2
0.6k+b=2.4
k+b=2
(2分)
k=-1
b=3
(3分)
∴函數(shù)關(guān)系式為y=-x+3(4分)

(2)∵由已知w=y•x-y×0.5=(-x+3)x-(-x+3)×0.5=-x2+3.5x-1.5(6分)
當(dāng)x=2時(shí),w=-22+3.5×2-1.5=1.5
故此時(shí)的銷售利潤是1.5萬元.(7分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線形拱橋,正常水位時(shí)橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的解析式;
(2)設(shè)正常水位時(shí)橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求水深超過多少米時(shí)就會(huì)影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BCx軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC,過A、B、C三點(diǎn)的拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-
3
2
x2+bx
經(jīng)過點(diǎn)O、A、B三點(diǎn),且A點(diǎn)坐標(biāo)為(4,0),B的坐標(biāo)為(m,2
3
),點(diǎn)C是拋物線在第三象限的一點(diǎn),且橫坐標(biāo)為-2
(1)求拋物線的解析式和直線BC的解析式.
(2)直線BC與x軸相交于點(diǎn)D,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{1,-4,1}的函數(shù)的圖象向下平移2個(gè)單位,得到一個(gè)新函數(shù)圖象,求這個(gè)新函數(shù)圖象的解析式;
(2)“特征數(shù)”是{0,-
3
3
,
3
}
的函數(shù)圖象與x、y軸分別交點(diǎn)C、D,“特征數(shù)”是{0,-
3
,
3
}
的函數(shù)圖象與x軸交于點(diǎn)E,點(diǎn)O是原點(diǎn),判斷△ODC與△OED是否相似,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠AOB=45°,過OA上到點(diǎn)O的距離分別為1,2,3,4,5 …的點(diǎn)作OA的垂線與OB相交,再按一定規(guī)律標(biāo)出一組如圖所示的黑色梯形.設(shè)前n個(gè)黑色梯形的面積和為Sn
n123
Sn
(1)請(qǐng)完成上面的表格;
(2)已知Sn與n之間滿足一個(gè)二次函數(shù)關(guān)系,試求出這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(3,0),B(8,0),與y軸交于點(diǎn)C,且AC平分∠OCB,直線l是它的對(duì)稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點(diǎn)D,沿直線l平移直線BC,與直線l,y軸分別交于點(diǎn)E,F(xiàn),探究四邊形CDEF為菱形時(shí)點(diǎn)E的坐標(biāo);
(3)線段CB上有一動(dòng)點(diǎn)P,從C點(diǎn)開始以每秒一個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng),PM⊥BC,交線段CA于點(diǎn)M,記點(diǎn)P運(yùn)動(dòng)時(shí)間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關(guān)系式,并確定在運(yùn)動(dòng)過程中y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn)(C在B的左邊).
(1)過A、O、B三點(diǎn)作⊙M,求⊙M的半徑;
(2)點(diǎn)P為弧OAB上的動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何位置時(shí)△OPB的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)及△OPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案