將拋物線c1:y=沿x軸翻折,得拋物線c2,如圖所示.
(1)請直接寫出拋物線c2的表達(dá)式.
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A,B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為N,與x軸交點(diǎn)從左到右依次為D,E.
①當(dāng)B,D是線段AE的三等分點(diǎn)時(shí),求m的值;
②在平移過程中,是否存在以點(diǎn)A,N,E,M為頂點(diǎn)的四邊形是矩形的情形?若存在,請求出此時(shí)m的值;若不存在,請說明理由.
解:(1).
(2)①令,得:,
則拋物線c1與軸的兩個(gè)交點(diǎn)坐標(biāo)為(-1,0),(1,0).
∴A(-1-m,0),B(1-m,0).
同理可得:D(-1+m,0),E(1+m,0).
當(dāng)時(shí),如圖①,
,∴.
當(dāng)時(shí),如圖②,,
∴. ∴當(dāng)或2時(shí),B,D是線段AE的三等分點(diǎn).
②存在.
方法一
理由:連接AN、NE、EM、MA.依題意可得:.
即M,N關(guān)于原點(diǎn)O對(duì)稱, ∴.
∵, ∴A,E關(guān)于原點(diǎn)O對(duì)稱, ∴,
∴四邊形ANEM為平行四邊形.
要使平行四邊形ANEM為矩形,必需滿足,
即, ∴.
∴當(dāng)時(shí),以點(diǎn)A,N,E,M為頂點(diǎn)的四邊形是矩形.
方法二
理由:連接AN、NE、EM、MA. 依題意可得:.
即M,N關(guān)于原點(diǎn)O對(duì)稱, ∴.
∵, ∴A,E關(guān)于原點(diǎn)O對(duì)稱, ∴,
∴四邊形ANEM為平行四邊形.
∵,
,
,
若,則,∴.
此時(shí)△AME是直角三角形,且∠AME=90°.
∴當(dāng)時(shí),以點(diǎn)A,N,E,M為頂點(diǎn)的四邊形是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆北京市通州區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
(8分)將拋物線c1:y=沿x軸翻折,得到拋物線c2,如圖所示.
(1)請直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A,B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為N,與x軸的交點(diǎn)從左到右依次為D,E.
①用含m的代數(shù)式表示點(diǎn)A和點(diǎn)E的坐標(biāo);
②在平移過程中,是否存在以點(diǎn)A,M,E為頂點(diǎn)的三角形是直角三角形的情形?若存在,請求出此時(shí)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年北京市通州區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(8分)將拋物線c1:y=沿x軸翻折,得到拋物線c2,如圖所示.
(1)請直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A,B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為N,與x軸的交點(diǎn)從左到右依次為D,E.
①用含m的代數(shù)式表示點(diǎn)A和點(diǎn)E的坐標(biāo);
②在平移過程中,是否存在以點(diǎn)A,M,E為頂點(diǎn)的三角形是直角三角形的情形?若存在,請求出此時(shí)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:江西省中考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com