【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長度的半圓O1 , 半圓O2 , 半圓O3 , …,組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長度,則第101秒時(shí),點(diǎn)P的坐標(biāo)是 .
【答案】(101,1)
【解析】解:半徑為1個(gè)單位長度的半圓的周長為: ×2π×1=π,
∵點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長度,
∴點(diǎn)P1秒走 個(gè)半圓,
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為1秒時(shí),點(diǎn)P的坐標(biāo)為(1,1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為2秒時(shí),點(diǎn)P的坐標(biāo)為(2,0),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為3秒時(shí),點(diǎn)P的坐標(biāo)為(3,﹣1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為4秒時(shí),點(diǎn)P的坐標(biāo)為(4,0),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為5秒時(shí),點(diǎn)P的坐標(biāo)為(5,1),
當(dāng)點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為6秒時(shí),點(diǎn)P的坐標(biāo)為(6,0),
…,
∵101÷4=25…1,
∴P101的坐標(biāo)是(101,1),
故答案為:(101,1).
根據(jù)圖象可得移動(dòng)4次圖象完成一個(gè)循環(huán),從而可得出點(diǎn)P101的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)己知,如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(4,0)、(0,3).
(1)求AB的長度.
(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點(diǎn)C的坐標(biāo).
(3)在x軸上是否存一點(diǎn)P,使得⊿ABP是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長為16m,寬為6m,拋物線的最高點(diǎn)C離地面AA1的距離為8m.
(1)按如圖所示的直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式.
(2)一大型汽車裝載某大型設(shè)備后,高為7m,寬為4m,如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貸車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對居民天然氣收費(fèi)采用階梯氣價(jià),以“年度”作為一個(gè)階梯氣價(jià)結(jié)算周期,年度用氣量分檔和價(jià)格如下:第一檔:年用氣量0~242(含)立方米,價(jià)格a元/立方米,第二檔:年用氣量242~360(含)立方米,價(jià)格b元/立方米,即年用氣量超過242度,超出部分氣價(jià)按b元收費(fèi),某戶居民一年用天然氣300立方米,該戶居民這一年應(yīng)交納天然氣費(fèi)是_____元.(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明打算用一塊面積為900cm2的正方形木板,沿著邊的方向裁出一個(gè)長方形面積為588cm2桌面,并且的長寬之比為4:3,你認(rèn)為能做到嗎?如果能,計(jì)算出桌面的長和寬;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
【1】請寫出一個(gè)你學(xué)過的特殊四邊形中是等對邊四邊形的圖形的名稱;
【2】如圖,在中,點(diǎn)分別在上,設(shè)相交于點(diǎn),若,.請你寫出圖中一個(gè)與相等的角,并猜想圖中哪個(gè)四邊形是等對邊四邊形;
【3】在中,如果是不等于的銳角,點(diǎn)分別在上,且.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了求1+2+22+23+24+…+22018的值,可以設(shè)s=1+2+22+23+…+22018 , 則則2s=2+22+23+24+…+22018 , 所以2s﹣s=22019﹣1,即1+2+22+…+22018=22019﹣1,仿照以上推理,計(jì)算出1+7+72+73+…72020的值( )
A.72021﹣1
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com