【題目】為了參加仙桃市中小學(xué)生首屆詩詞大會,某校八年級的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(l)班 86,85,77,9285;八(2)班 79,8592,85,89.通過數(shù)據(jù)分析,列表如下:

1)直接寫出表中a,b,c,d的值;

2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個班前5名同學(xué)的成績較好?說明理由.

【答案】(1)a=86,b=85,c=85,d=22.8;(2) 八(2)班前5名同學(xué)的成績較好,理由見解析

【解析】

1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念解答, 根據(jù)方差計算公式,求出八(1)班的方差即可;

2)先根據(jù)方差計算公式,求出八(1)班的方差,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)與方差的意義求解即可;

1)八(2)班的平均分a=79+85+92+85+89÷5=86,

將八(1)班的前5名學(xué)生的成績按從小到大的順序排列為:77,85,85,86,92,第三個數(shù)是85,所以中位數(shù)b=85,

85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)c=85

八(1)班的方差d=[86-852+85-852+77-852+92-852+85-852]÷5=22.8

故答案為86,85,85,22.8;

2)∵由數(shù)據(jù)可知,兩班成績中位數(shù),眾數(shù)相同,而八(2)班平均成績更高,且方差更小,成績更穩(wěn)定,

∴八(2)班前5名同學(xué)的成績較好;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)寫出點的坐標(biāo)

2)線段先向____________平移____________個單位長度,再向____________平移____________單位長度,平移后的線段與線段重合.

3)已知在軸上存在點圍成的三角形面積為6,請寫出的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是考古學(xué)家發(fā)現(xiàn)的古代錢幣的一部分,合肥一中的小明正好學(xué)習(xí)了圓的知識,他想求其外圓半徑,連接外圓上的兩點A,B,并使AB與內(nèi)圓相切于點D,CDAB交外圓于點C.測得CD=10 cm,AB=60 cm,則這個錢幣的外圓半徑為__cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下述材料:

下述形式的繁分?jǐn)?shù)叫做有限連分?jǐn)?shù),其中n是自然數(shù),a0是整數(shù),a1a2,a3,…,an是正整數(shù):

其中稱為部分商。

按照以下方式可將任何一個分?jǐn)?shù)轉(zhuǎn)化為連分?jǐn)?shù)的形式:,則;考慮的倒數(shù),有,從而;再考慮的倒數(shù),有,于是得到a的連分?jǐn)?shù)展開式,它有4個部分商:3,1,33;

可利用連分?jǐn)?shù)來求二元一次不定方程的特殊解,以為例,首先將寫成連分?jǐn)?shù)的形式,如上所示;其次,數(shù)部分商的個數(shù),本例是偶數(shù)個部分商(奇數(shù)情況請見下例);最后計算倒數(shù)第二個漸近分?jǐn)?shù),從而是一個特解。

考慮不定方程,先將寫成連分?jǐn)?shù)的形式:。

注意到此連分?jǐn)?shù)有奇數(shù)個部分商,將之改寫為偶數(shù)個部分商的形式:

計算倒數(shù)第二個漸近分?jǐn)?shù):,所以的一個特解。

對于分式,有類似的連分式的概念,利用將分?jǐn)?shù)展開為連分?jǐn)?shù)的方法,可以將分式展開為連分式。例如的連分式展開式如下,它有3個部分商: ;

再例如,,它有4個部分商:1,

請閱讀上述材料,利用所講述的方法,解決下述兩個問題

1)找出兩個關(guān)于x的多項式pq,使得

2)找出兩個關(guān)于x的多項式uv,使得。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標(biāo)分別為(-1,4),(3,4),(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù)點表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足

1 , ,

2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù) 表示的點重合;

3)點、、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、的長(用含的式子表示);

4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某街區(qū)的平面示意圖,根據(jù)要求答題.

1)這幅圖的比例尺是( )

2)學(xué)校位于廣場的( )面(填東、南、西、北)( )千米處.

3)人民公園位于廣場的東偏南方向3千米處.在圖中標(biāo)出它的位置.

4)廣場的西面1千米處,有一條商業(yè)街與人民路垂直,在圖中畫線表示商業(yè)街.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.

(1)判斷方程根的情況;

(2)若方程的兩根x1,x2滿足(x1-1)(x2-1)=5,k;

(3)ABC的兩邊AB,AC的長是方程的兩根,第三邊BC的長為5,

k為何值時,ABC是以BC為斜邊的直角三角形?

k為何值時,ABC是等腰三角形,并求出ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案