【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,連結(jié)AC,DE∥AC交邊CB于點(diǎn)E.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求△CDE與△BAC的面積之比.
【答案】(1)A(﹣1,0),B(3,0);(2).
【解析】
(1)令y=0,即可求A、B的坐標(biāo);(2)由CD∥AB,DE∥AC得到△CDE∽△BAC,當(dāng)y=3時(shí),即可求出D點(diǎn)坐標(biāo),得到CD的長,從而得到△CDE與△BAC的相似比,根據(jù)相似三角形的面積比等于相似比的平方,得到答案.
(1)∵令y=0,則﹣(x﹣1)2+4=0,解得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0);
(2)∵CD∥AB,DE∥AC,
∴△CDE∽△BAC.
∵當(dāng)y=3時(shí),x1=0,x2=2,∴CD=2.
∵AB=4,∴=,
∴==.
故答案為:(1)A(﹣1,0),B(3,0);(2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點(diǎn)E,交⊙O于點(diǎn)D,滿足∠BEC=3∠ACD.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BD,點(diǎn)F為弧BD上一點(diǎn),連接CF,弧CF=弧BD,過點(diǎn)A作AG⊥CD,垂足為點(diǎn)G,求證:CF+DG=CG;
(3)如圖3,在(2)的條件下,點(diǎn)H為AC上一點(diǎn),分別連接DH,OH,OH⊥DH,過點(diǎn)C作CP⊥AC,交⊙O于點(diǎn)P,OH:CP=1: ,CF=12,連接PF,求PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時(shí)段內(nèi),甲樓對乙樓的采光的影響情況.假設(shè)某一時(shí)刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h;
(2)當(dāng)α=30°時(shí),甲樓樓頂B的影子落在乙樓的第幾層?從此時(shí)算起,若α每小時(shí)增加10°,幾小時(shí)后,甲樓的影子剛好不影響乙樓采光.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△ABC的邊AB上,過點(diǎn)B,C,E的⊙O切AC于點(diǎn)C.直徑CD交BE于點(diǎn)F,連結(jié)BD,DE.已知∠A=∠CDE,AC=2,BD=1.
(1)求⊙O的直徑.
(2)過點(diǎn)F作FG⊥CD交BC于點(diǎn)G,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. “任意選擇某一電視頻道,它正在播放動畫片”是必然事件
B. 某運(yùn)動員投一次籃,投中的概率為0.8,則該運(yùn)動員投5次籃,一定有4次投中
C. 任意拋擲一枚均勻的硬幣,反面朝上的概率為
D. 布袋里有3個(gè)白球,1個(gè)黑球.任意取出1個(gè)球,恰好是黑球的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CF相交于點(diǎn)G,連接EF,下列結(jié)論:
①=; ②=; ③=; ④=.其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D、E分別是AC、AB的中點(diǎn),點(diǎn)F在BC的延長線上,且∠CDF=∠A.
(1)求證:四邊形DECF是平行四邊形;
(2)若∠A=30°,寫出圖中所有與FD長度相等的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AB=6cm,AD=8cm,直線 EF 從點(diǎn) A 出發(fā)沿 AD 方向勻速運(yùn)動,速度是 2cm/s,運(yùn)動過程中始終保持 EF∥AC.F 交
AD 于 E,交 DC 于點(diǎn) F;同時(shí),點(diǎn) P 從點(diǎn) C 出發(fā)沿 CB 方向勻速運(yùn)動,速度是 1cm/s,連接 PE、PF,設(shè)運(yùn)動時(shí)間 t(s)(0<t<4).
(1)當(dāng) t=1 時(shí),求 EF 長;
(2)求 t 為何值時(shí),四邊形 EPCD 為矩形;
(3)設(shè)△PEF 的面積為 S(cm2),求出面積 S 關(guān)于時(shí)間 t 的表達(dá)式;
(4)在運(yùn)動過程中,是否存在某一時(shí)刻使 S△PC F:S 矩形 ABCD=3:16?若存在, 求出 t 的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明與小亮兩個(gè)人打算騎共享單車騎行出游,兩人打開手機(jī)APP進(jìn)行選擇,已知附近共有3種品牌的5輛車,其中A品牌與B品牌各有2輛,C品牌有1輛,手機(jī)上無法識別品牌,且有人選中車后其他人無法再選.
(1)若小明首先選擇,則小明選中A品牌單車的概率為 ;
(2)求小明和小亮選中同一品牌單車的概率.(請用“畫樹狀圖”或“列表”的方法給出分析過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com