如圖,⊙O1與⊙O2相交于點A和B,經過A作直線與⊙O1相交于D,與⊙O2相交于C,設弧BC的中點為M,弧BD的中點為N,線段CD的中點為K.求證:MK⊥KN.

證明:將△KDN繞點K順時針旋轉180°得△GCK,連接MC,MB,GC,NB,ND,MN,延長AB交MN于S.…
則CG=DN,∠GCK=∠KDN,
∵弧BC的中點為M,弧BD的中點為N,
∴DN=BN,MC=MB,…
∴CG=BN,
又∵∠KCM=∠MBS,∠GCK=∠KDN=∠SBN,
∴∠GCM=∠MBN,…
在△GCM與△NBM中,
,
∴△GCM≌△NBM(SAS),…
∴GM=MN.
又GK=KN,
∴MK⊥KN…
分析:首先將△KDN繞點K順時針旋轉180°得△GCK,連接MC,MB,GC,NB,ND,MN,延長AB交MN于S,根據旋轉的性質,即可得CG=DN,∠GCK=∠KDN,又由弧BC的中點為M,弧BD的中點為N,即可證得DN=BN,MC=MB,然后由圓的內接四邊形的性質,可證得∠GCM=∠MBN,即可根據SAS證得△GCM≌△NBM,然后由等腰三角形的性質,證得MK⊥KN.
點評:此題考查了相交圓的性質,圓的內接四邊形的性質,旋轉的性質,等腰三角形的判定與性質以及全等三角形的判定與性質等知識.此題綜合性很強,難度較大,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點P,直線AB過點P交⊙O1于A,交⊙O2于B,點C、D分別為⊙O1、⊙O2上的點,且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,⊙O1與⊙O2外切于M點,AF是兩圓的外公切線,A、B是切點,DF經過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經過M點,連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長為8,tan∠ACB=
34
,求⊙O2的直徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,⊙O1與⊙O2相交于C、D兩點,⊙O1的割線PAB與DC的延長線交于點P,PN與⊙O2相切于點N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點,直線l與⊙O1、⊙O2分別切于B,C點,若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點,過點A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習冊答案