一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關(guān)系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)
拓展 在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸 在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α = 60°時(shí),通過計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3.
(1)CQ∥BE, 3。
(2)。
(3)37°。
拓展:y=-x+3. 37°≤α≤53°。
延伸:溢出液體可以達(dá)到4dm3
【解析】
分析:探究:(1)根據(jù)水面與水平面平行可以得到CQ與BE平行,利用勾股定理即可求得BD的長:
。
(2)液體正好是一個(gè)以△BCQ是底面的直棱柱,據(jù)此即可求得液體的體積;。
(3)根據(jù)液體體積不變,據(jù)此即可列方程求解。
拓展:分容器向左旋轉(zhuǎn)和容器向右旋轉(zhuǎn)兩種情況討論。
延伸:當(dāng)α=60°時(shí),如圖6所示,設(shè)FN∥EB,GB′∥EB,過點(diǎn)G作GH⊥BB′于點(diǎn)H,此時(shí)容器內(nèi)液體形成兩層液面,液體的形狀分別是以Rt△NFM和直角梯形MBB′G為底面的直棱柱,求得棱柱的體積,即可求得溢出的水的體積,據(jù)此即可作出判斷。
探究:(1)CQ∥BE, 3。
(2)。
(3)在Rt△BCQ中,,∴α=∠BCQ=37°。
拓展:當(dāng)容器向左旋轉(zhuǎn)時(shí),如圖3,0°≤α≤37°,
∵液體體積不變,∴。
∴y=-x+3.
當(dāng)容器向右旋轉(zhuǎn)時(shí),如圖,同理可得:。
當(dāng)液面恰好到達(dá)容器口沿,即點(diǎn)Q與點(diǎn)B′重合時(shí),如圖,
由BB′=4,且,得PB=3,
∴由tan∠PB′B=,得∠PB′B=37°!唳=∠B′PB=53°。
此時(shí)37°≤α≤53°。
延伸:當(dāng)α=60°時(shí),如圖所示,設(shè)FN∥EB,GB′∥EB,過點(diǎn)G作GH⊥BB′于點(diǎn)H。
在Rt△B′GH中,GH=MB=2,∠GB′B=30°,
∴HB′=2。
∴MG=BH=4-2<MN。
此時(shí)容器內(nèi)液體形成兩層液面,液體的形狀分別是以Rt△NFM和直角梯形MBB′G為底面的直棱柱。
∵,
∴。
∴溢出液體可以達(dá)到4dm3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
4 |
3 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(帶解析) 題型:解答題
一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關(guān)系是 ,BQ的長是 dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)
拓展 在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC = x,BQ = y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
延伸 在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α = 60°時(shí),通過計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com