【題目】小敏的爸爸買了某項(xiàng)體育比賽的一張門票,她和哥哥兩人都想去觀看,可門票只有一張,讀九年級哥哥想了一個辦法,拿出張撲克牌,將數(shù)字、、的四張給了小敏,將數(shù)字、、的四張撲克牌留給自己,并按如下游戲規(guī)則進(jìn)行:小敏和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出兩張牌數(shù)字相加,如果和為偶數(shù),則小敏去;如果和為奇數(shù),則哥哥去.

(1)請用畫樹形圖或列表的方法求小敏去看比賽的概率;

(2)小敏知道哥哥設(shè)計(jì)的游戲規(guī)則不公平,于是她提議兩人交換一張牌,使游戲規(guī)則公平后再進(jìn)行比賽,你知道小敏是如何提議的嗎?說說你的理由.

【答案】(1);(2)用小敏的任一張奇數(shù)牌交換哥哥的任一張偶數(shù)牌后游戲是公平的.

【解析】

(1)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出和為偶數(shù)的概率.

(2)游戲是否公平,交換一張牌使雙方獲勝的概率相等即可,使小敏和哥哥抽到奇數(shù)牌的概率等于抽到偶數(shù)牌的概率.

列表如下:

小敏

哥哥

從上表可以看出共有種可能的值,而其中偶數(shù)有種,所以(小敏去看比賽);

用小敏的任一張奇數(shù)牌交換哥哥的任一張偶數(shù)牌.

小敏手中有張奇數(shù)牌,一張偶數(shù)牌,而哥哥手中有張偶數(shù)牌,一張奇數(shù)牌.用小敏的任一張奇數(shù)牌交換哥哥的任一張偶數(shù)牌后,兩人各有兩張奇數(shù)牌和和兩張偶數(shù)牌.

(小敏去看比賽)(小敏和哥哥都抽到奇數(shù)牌)(小敏和哥哥都抽到偶數(shù)牌);

(哥哥去看比賽)(小敏抽到奇數(shù)牌而哥哥抽到偶數(shù)牌)(小敏抽到偶數(shù)牌而哥哥抽到奇數(shù)牌)

所以:用小敏的任一張奇數(shù)牌交換哥哥的任一張偶數(shù)牌后游戲是公平的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究與應(yīng)用:

(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分面積是 (寫成兩數(shù)平方差的形式)

(2)小穎將陰影部分裁下來,重新拼成一個長方形,如圖乙,則長方形的長是 ,寬是 ,面積是 (寫成多項(xiàng)式乘法的形式).

(3)比較甲乙兩圖陰影部分的面積,可以得到公式 (用式子表達(dá))

(4)運(yùn)用你所得到的公式計(jì)算:10.3×9.7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長CEBA交于點(diǎn)F,連接ACDF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某校有一塊菱形空地ABCD,A=60°,AB=40m,現(xiàn)計(jì)劃在內(nèi)部修建一個四個頂點(diǎn)分別落在菱形四條邊上的矩形魚池EFGH,其余部分種花草,園林公司修建魚池,草坪的造價(jià)為y(元)與修建面積s(m2)之間的函數(shù)關(guān)系如圖2所示,設(shè)AE為x米.

(1)填空:ED=   m,EH=   m,(用含x的代數(shù)式表示);

(提示:在直角三角形中,30°角所對的直角邊等于斜邊的一半)

(2)若矩形魚池EFGH的面積是300m2,求EF的長度;

(3)EF的長度為多少時(shí),修建的魚池和草坪的總造價(jià)最低,最低造價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形為菱形,點(diǎn),的坐標(biāo)分別為、,動點(diǎn)從點(diǎn)出發(fā),以每秒個單位的速度沿向終點(diǎn)運(yùn)動,連接并延長交于點(diǎn),過點(diǎn),交于點(diǎn),連接,當(dāng)動點(diǎn)運(yùn)動了秒時(shí).

(1)點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________(用含的代數(shù)式表示);

(2)的面積為,求的函數(shù)關(guān)系式,并求出當(dāng)取何值時(shí),有最大值,最大值是多少?

(2)出發(fā)的同時(shí),有一動點(diǎn)點(diǎn)開始在線段上以每秒個單位長度的速度向點(diǎn)移動,試求當(dāng)為何值時(shí),相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+cx軸交于點(diǎn)A3,0),與y軸交于點(diǎn)B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A,B

1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

2Mm0)為x軸上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N

①點(diǎn)M在線段OA上運(yùn)動,若以B,P,N為頂點(diǎn)的三角形與APM相似,求點(diǎn)M的坐標(biāo);

②點(diǎn)Mx軸上自由運(yùn)動,若三個點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為共諧點(diǎn).請直接寫出使得M,P,N三點(diǎn)成為共諧點(diǎn)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,在四邊形ABCD中,∠A=C=90°,AD=CD,點(diǎn)E、F分別在邊AB、BC上,ED=FD,證明:∠ADE=CDF.

(拓展)如圖②,在菱形ABCD中,∠A=120°,點(diǎn)E、F分別在邊AB、BC上,ED=FD.若∠EDF=30°,求∠CDF的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿BD翻折,點(diǎn)C落在P點(diǎn)處,連接AP.若∠ABP=26°,則∠APB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖案中,是軸對稱圖形的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案