精英家教網 > 初中數學 > 題目詳情

過點P(-1,3)作直線,使它與兩坐標軸圍成的三角形面積為5,這樣的直線可以作條.


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
C
分析:設滿足條件的直線L:y=kx+b,因為P(-1,3)在直線上,所以,3=-k+b,故b=k+3,所以y=kx+k+3,可求出與坐標軸的兩點,然后根據面積公式可確定k的值從而確定幾條直線.
解答:設滿足條件的直線L:y=kx+b,因為P(-1,3)在直線上,
所以,3=-k+b,故b=k+3,
所以y=kx+k+3,它與兩坐標軸的交點為A(-,0),B(0,k+3),
S=OA•OB=|-|•|k+3|=5,
(k+3)2=10|k|,
當k>0時,方程k2-4k+9=0無實數解,
當k<0時,方程為k2+16k+9=0,
解得k=-8+或k=-8-
故選C.
點評:本題考查待定系數法求解析式以及與一元二次方程的結合求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知拋物線y=x2+mx-2m2(m≠0).
(1)求證:該拋物線與x軸有兩個不同的交點;
(2)過點P(0,n)作y軸的垂線交該拋物線于點A和點B(點A在點P的左邊),是否存在實數m、n,使得AP=2PB?若存在,則求出m、n滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知二次函數過點A(0,-2),B(-1,0),C(
5
4
,
9
8

(1)求此二次函數的解析式;
(2)判斷點M(1,
1
2
)是否在直線AC上;
(3)過點M(1,
1
2
)作一條直線l與二次函數的圖象交于E、F兩點(不同于A,B,C三點),請自已給出E點的坐標,并證明△BEF是直角三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

過點P(-1,3)作直線,使它與兩坐標軸圍成的三角形面積為5,這樣的直線可以作( 。l.
A、4B、3C、2D、1

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•田陽縣一模)如圖,已知直線l:y=
3
3
x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;…;按此作法繼續(xù)下去,則點A4的坐標為
(0,256)
(0,256)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2+bx+3經過A(-3,0),B(-1,0)兩點如圖1,頂點為M.
(1)求a、b的值;
(2)設拋物線與y軸的交點為Q,且直線y=-2x+9與直線OM交于點D(如圖1).現將拋物線平移,保持頂點在直線OD上,當拋物線的頂點平移到D點時,Q點移至N點,求拋物線上的兩點M、Q間所夾的曲線
MQ
掃過的區(qū)域的面積;
(3)將拋物線平移,當頂點M移至原點時,過點Q(0,3)作不平行于x軸的直線交拋物線于E,F兩點(如圖2).試探究:在y軸的負半軸上是否存在點P,使得∠EPQ=∠QPF?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案