已知OC⊥OB,垂足為O,∠AOC=20°,求∠AOB的度數(shù).
分析:先根據(jù)垂直的定義得到∠BOC=90°,然后分類討論:當(dāng)OC在∠BOC外部,利用∠AOB=∠AOC+∠BOC計(jì)算;當(dāng)OC在∠BOC內(nèi)部,利用∠AOB=∠BOC-∠AOC計(jì)算.
解答:解:∵OC⊥OB,
∴∠BOC=90°,
當(dāng)OC在∠BOC外部,如圖1,∠AOB=∠AOC+∠BOC=20°+90°=110°;
當(dāng)OC在∠BOC內(nèi)部,如圖1,∠AOB=∠BOC-∠AOC=90°-20°=70°,
即∠AOB的度數(shù)為70°或110°.
點(diǎn)評(píng):本題考查了角度的計(jì)算:∠AOB是∠AOC和∠BOC的和,記作:∠AOB=∠AOC+∠BOC;∠AOC是∠AOB和∠BOC的差,記作:∠AOC=∠AOB-∠BOC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知OC⊥OB,垂足為O,∠AOC=30°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知OC⊥OB,垂足為O,∠AOC=30°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知OC⊥OB,垂足為O,∠AOC=20°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省惠州市惠城區(qū)十八校九年級(jí)4月模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形AOCB是梯形,ABOC,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(10,0),OBOC.點(diǎn)PC點(diǎn)出發(fā),沿線段CO以5個(gè)單位/秒的速度向終點(diǎn)O勻速運(yùn)動(dòng),過點(diǎn)PPHOB,垂足為H.

      (1)求點(diǎn)B的坐標(biāo);

      (2)設(shè)△HBP的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),△HBP的面積最大,并求出最大面積;

(3)分別以P、H為圓心,PC、HB為半徑作⊙P和⊙H,當(dāng)兩圓外切時(shí),求此時(shí)t的值.

【解析】(1)根據(jù)已知得出OB=OC=10,BN=OA=8,即可得出B點(diǎn)的坐標(biāo);

(2)利用△BON∽△POH,得出對(duì)應(yīng)線段成比例,即可得出S與t之間的函數(shù)關(guān)系式;從而求出△HBP的最大面積;

(3)若⊙P和⊙H兩圓外切 ,則須HB+PC=HP,從而求解

 

查看答案和解析>>

同步練習(xí)冊(cè)答案