【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、BC、CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度數(shù).
【答案】(1)見(jiàn)解析;(2)70°.
【解析】
(1)結(jié)合中位線的性質(zhì)證明即可;(2)先根據(jù)平行四邊形的性質(zhì)得到∠DEF=∠BAC,再根據(jù)題意證明∠DHF=∠BAC,得到∠DEF=∠DHF,計(jì)算∠DHF大小即可.
(1)∵D,E,F分別是邊AB、BC、CA的中點(diǎn),
∴DE,EF是△ABC的中位線,
∴DE∥AF,EF∥AD,
∴四邊形ADEF是平行四邊形.
(2)∵四邊形ADEF是平行四邊形,
∴∠DEF=∠BAC,
∵D,F分別是AB,CA的中點(diǎn),AH是邊BC上的高,
∴DH=AD,FH=AF,
∴∠DAH=∠DHA,∠FAH=∠FHA,
∵∠DAH+∠FAH=∠BAC,
∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC,
∴∠DEF=∠DHF=∠AHF+∠AHD=70°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH.
(1)如圖1,點(diǎn)A、D分別在EH和EF上,連接BH、AF,BH和AF有何數(shù)量關(guān)系,并說(shuō)明理由;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn),如圖2,判斷BH和AF的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,,點(diǎn)是直線、之間的一點(diǎn),連接、.
(1)問(wèn)題發(fā)現(xiàn):
①若,,則___________.
②猜想圖1中、、的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖2,,線段把這個(gè)封閉區(qū)域分為Ⅰ、Ⅱ兩部分(不含邊界),點(diǎn)是位于這兩個(gè)區(qū)域內(nèi)的任意一點(diǎn),請(qǐng)直接寫(xiě)出、、的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù) (x<0)的圖象交于點(diǎn)B(﹣2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△ADE都是直角三角形,∠C=∠AED=,點(diǎn)E在AB上,∠D=.如果△ABC經(jīng)順時(shí)針旋轉(zhuǎn)后能與△ADE重合,那么旋轉(zhuǎn)中心是點(diǎn)______,旋轉(zhuǎn)了______度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知直線與軸相交于點(diǎn),與軸交于點(diǎn).
(1)求的值及的面積;
(2)點(diǎn)在軸上,若是以為腰的等腰三角形,直接寫(xiě)出點(diǎn)的坐標(biāo);
(3)點(diǎn)在軸上,若點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)的面積與的面積相等時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解決下列問(wèn)題.
(1)[-4.5]=_____;<3.5>=________;
(2)若[x]=2,則x的取值范圍是________;若<y>=-1,則y的取值范圍是_______.
(3)若,則x為_________.
(4)已知x、y滿(mǎn)足方程組,求x、y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】認(rèn)真閱讀下面的材料,完成有關(guān)問(wèn)題.
材料:在學(xué)習(xí)絕對(duì)值時(shí),老師教過(guò)我們絕對(duì)值的幾何含義,一般地,點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,那么A、B之間的距離可表示為|a﹣b|.
問(wèn)題(1):點(diǎn)A、B、C在數(shù)軸上分別表示有理數(shù)x、﹣2、1,那么A到B的距離與A到C的距離之和可表示為 (用含絕對(duì)值的式子表示).
問(wèn)題(2):利用數(shù)軸探究:①找出滿(mǎn)足|x﹣3|+|x+1|=6的x的所有值是 ;
②設(shè)|x﹣3|+|x+1|=p,當(dāng)x的值取在不小于﹣1且不大于3的范圍時(shí),p的值是不變的,而且是p的最小值,這個(gè)最小值是 ;當(dāng)x的值取在 的范圍時(shí),|x|+|x﹣2|的最小值是 .
問(wèn)題(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)派出12名同學(xué)參加數(shù)學(xué)競(jìng)賽,老師以75分為基準(zhǔn),把分?jǐn)?shù)超過(guò)75分的部分記為正數(shù),不足部分記為負(fù)數(shù)。評(píng)分記錄如下:+15,+20,5,4,3,+4,+6,+2,+3,+5,+7,8.
(1)這12名同學(xué)中最高分和最低分各是多少?
(2)這些同學(xué)的平均成績(jī)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com