【題目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O.
(1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。
(2)若AC=3,BC=4,求⊙O的半徑長.
【答案】(1)圖見解析,直線BC與⊙O相切,理由見解析;(2)
【解析】
(1)因為AD是弦,所以圓心O即在AB上,也在AD的垂直平分線上,據(jù)此作圖即可;因為D在圓上,所以只要能證明OD⊥BC就說明BC為⊙O的切線;
(2)設(shè)⊙O的半徑為x,證△BOD∽△BAC得,即,解之可得.
解:(1)直線BC與⊙O相切.理由如下:
作圖如圖所示,連接OD,
∵AD為角平分線,
∴∠OAD=∠CAD,
又∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵AC⊥BC,
∴OD⊥BC,
∴直線BC與⊙O相切;
(2)設(shè)⊙O的半徑為x,
∵AC=3,BC=4,
∵AB=5,
又OD⊥BC,則OD∥BC,
∴△BOD∽△BAC,
∴,
即,
解得x=,
∴⊙O的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某個斜坡上,看到對面某高樓上方有一塊宜傳“中國國際進(jìn)口博覽會”的豎直標(biāo)語牌.小明在點測得標(biāo)語牌頂端D處的仰角為,并且測得斜坡的坡度為(在同一條直線上),已知斜坡長米,高樓高米(即米),則標(biāo)語牌的長是( )米.(結(jié)果保留小數(shù)點后一位)(參考數(shù)據(jù):, , ,)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為的直徑,弦垂足為E,點H為弧AC上一點.連接DH交AB于點F,連接HA、BD,點G為DH上一點,連接AG,.
(1)如圖1,求證:;
(2)如圖2,連接HC,若,求證:;
(3)如圖3,連接交于點K,若點F為DG的中點,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有一批復(fù)印任務(wù),原來由甲復(fù)印店承接,按每100頁40元計費.現(xiàn)乙復(fù)印店表示:若學(xué)校先按月付給一定數(shù)額的承包費,則可按每100頁15元收費.兩復(fù)印店每月收費情況如圖所示.
(1)乙復(fù)印店的每月承包費是多少元?
(2)當(dāng)每月復(fù)印多少頁時兩復(fù)印店實際收費相同,費用是多少元?
(3)求甲、乙復(fù)印店的函數(shù)表達(dá)式.
(4)如果每月復(fù)印頁數(shù)在1200頁左右,那么應(yīng)選擇哪家復(fù)印店更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是半圓O的直徑,AC是弦,點P沿BA方向,從點B運動到點A,速度為1cm/s,若AB=10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過多長時間后,△APC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx(k>0)與雙曲線y=交于A、B兩點,BC⊥x軸于C,連接AC交y軸于D,下列結(jié)論:①A、B關(guān)于原點對稱;②△ABC的面積為定值;③D是AC的中點;④S△AOD=.其中正確結(jié)論的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知y是x(x>0)的函數(shù),表1中給出了幾組x與y的對應(yīng)值:
表1:
x | … | 1 | 2 | 3 | … | |||
y | … | 6 | 3 | 2 | 1 | … |
⑴以表中各對對應(yīng)值為坐標(biāo),在圖1的直角坐標(biāo)系中描出各點,用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學(xué)過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;
⑵如果一次函數(shù)圖像與⑴中圖像交于(1,3)和(3,1)兩點,在第一、四象限內(nèi)當(dāng)x在什么范圍時,一次函數(shù)的值小于⑴中函數(shù)的值?請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想測量電線桿AB的高度,但在太陽光下,電線桿的影子恰好落在地面和土地的坡面上,量得坡面上的影長CD=4m,地面上的影長BC=10m,土坡坡面與地面成30°的角,此時測得1m長的木桿的影長為2m,求電線桿的高度.(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB中點,AE∥CD,CE∥AB.
(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.
(2)連接BE,若∠BAC=30°,CE=1,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com