【題目】如圖,四邊形OABC為矩形,點(diǎn)B坐標(biāo)為(4,2),A,C分別在x軸,y軸上,點(diǎn)F在第一象限內(nèi),OF的長度不變,且反比例函數(shù)經(jīng)過點(diǎn)F.

(1)如圖1,當(dāng)F在直線y = x上時,函數(shù)圖象過點(diǎn)B,求線段OF的長.

(2)如圖2,若OF從(1)中位置繞點(diǎn)O逆時針旋轉(zhuǎn),反比例函數(shù)圖象與BC,AB相交,交點(diǎn)分別為D,E,連結(jié)OD,DE,OE.

①求證:CD=2AE.

②若AE+CD=DE,求k.

③設(shè)點(diǎn)F的坐標(biāo)為(a,b),當(dāng)ODE為等腰三角形時,求(a+b)2的值.

【答案】(1)OF =4;(2)①證明見解析; k=96-1636-4.

【解析】分析(1)由y=經(jīng)過點(diǎn)B (2,4).,求出k的值,再利用F在直線y = x,求出m的值,最后利用勾股定理求解即可;(2) 利用反比例函數(shù)k的幾何意義可求解; ②Rt△EBD中,分別用n表示出BD、BE、DE,再利用勾股定理解答即可; 分三種情況討論即可:OE=OD;

OE=DE;OD=DE.

(1)F在直線y=x

∴設(shè)F(m,m)

FMx

FM=OM=m

y=經(jīng)過點(diǎn)B (2,4).

k=8

OF =4;

(2)①∵函數(shù) 的圖象經(jīng)過點(diǎn)D,E

OC=2,OA=4

CO=2AE

②由①得:CD=2AE

∴可設(shè):CD=2n,AE=n

DE=CD+AE=3n

BD=4-2n, BE=2-n

RtEBD,由勾股定理得

解得

CD=2c,AE=c

情況一:若OD=DE

情況二:若OE=DE

情況三:OE=OD 不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校初一年級參加社會實(shí)踐課,報名第一門課的有x人,第二門課的人數(shù)比第一門課的少20人,現(xiàn)在需要從報名第二門課的人中調(diào)出10人學(xué)習(xí)第一門課,那么:

(1)報兩門課的共有多少人?

(2)調(diào)動后,報名第一門課的人數(shù)為   人,第二門課人數(shù)為   人.

(3)調(diào)動后,報名第一門課比報名第二門課多多少人?計算出代數(shù)式后,請選擇一個你覺得合適的x的值代入,并求出具體的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題

(1)一個暖瓶與一個水杯分別是多少元?

(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季空調(diào)銷售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的空調(diào)數(shù)量達(dá)到50臺后,每多生產(chǎn)一臺,當(dāng)天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設(shè)第x天生產(chǎn)空調(diào)y臺,直接寫出y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設(shè)第x天的利潤為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=10,點(diǎn)EAD邊上,已知B、E兩點(diǎn)關(guān)于直線l對稱,直線l分別交AD、BC邊于點(diǎn)M、N,連接BM、NE.

(1)求證:四邊形BMEN是菱形;

(2)DE=2,求NC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)圖象經(jīng)過點(diǎn)(3 , 5) , (-4,-9)兩點(diǎn).

(1)求一次函數(shù)解析式;

(2)求這個一次函數(shù)圖象和x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線ACBD相交于O,AB=6cm, BAO=30°,點(diǎn)FAB的中點(diǎn).

(1)求OF的長度;

(2)求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)(x<0)在第三象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸、y軸的垂線交一次函數(shù)y=-x+4的圖像于點(diǎn)A、B.AO、BO分別平分∠BAP,∠ABP ,則k的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(0,8)、B(8,0)、E(-2,0),動點(diǎn) C從原點(diǎn)O出發(fā)沿OA方向以每秒1個單位長度向點(diǎn)A運(yùn)動,動點(diǎn)D從點(diǎn)B出發(fā)沿BO方向以每秒2個單位長度向點(diǎn)O運(yùn)動,動點(diǎn)C、D同時出發(fā),當(dāng)動點(diǎn)D到達(dá)原點(diǎn)O時,點(diǎn)C、D停止運(yùn)動,設(shè)運(yùn)動時間為t 秒。

(1)填空:直線AB的解析式是_____________________;

(2)求t的值,使得直線CDAB;

(3)是否存在時刻t,使得△ECD是等腰三角形?若存在,請求出一個這樣的t值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案