如圖,在□ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.
(1)可證∠A=∠C,AB=CD,∠ABE=∠CDF則△ABE≌△CDF
(2)可證明在□ABCD中,AD∥BC,∠EDF=90°。所以四邊形DFBE是矩形
解析試題分析:證明:(1)在□ABCD中,AB=CD,∠A=∠C.
∵AB∥CD,∴∠ABD=∠CDB.
∵BE平分∠ABD,DF平分∠CDB,
∴∠ABE=∠ABD,∠CDF=∠CDB.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
∵∠A=∠C,AB=CD,∠ABE=∠CDF,
∴△ABE≌△CDF.
(2)∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.
∵AB=DB,AB=CD,∴DB=CD.
∵DF平分∠CDB,∴DF⊥BC,即∠BFD=90°.
在□ABCD中,∵AD∥BC,∴∠EDF+∠DEB=180°.
∴∠EDF=90°.
∴四邊形DFBE是矩形.
考點:全等三角形和矩形的判定
點評:本題難度中等,主要考查學(xué)生對全等三角形和矩形的判定知識點的掌握。
科目:初中數(shù)學(xué) 來源: 題型:
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
13 |
13 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com