【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn),與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A.
求拋物線(xiàn)頂點(diǎn)M的坐標(biāo);
若點(diǎn)A的坐標(biāo)為,軸,交拋物線(xiàn)于點(diǎn)B,求點(diǎn)B的坐標(biāo);
在的條件下,將拋物線(xiàn)在B,C兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線(xiàn)與圖象G有一個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
【答案】(1)M的坐標(biāo)為;(2)B(4,3);(3)或.
【解析】
利用配方法將已知函數(shù)解析式轉(zhuǎn)化為頂點(diǎn)式方程,可以直接得到答案
根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性質(zhì)解答;
利用待定系數(shù)法求得拋物線(xiàn)的表達(dá)式為根據(jù)題意作出圖象G,結(jié)合圖象求得m的取值范圍.
解:(1) ,
該拋物線(xiàn)的頂點(diǎn)M的坐標(biāo)為;
由知,該拋物線(xiàn)的頂點(diǎn)M的坐標(biāo)為;
該拋物線(xiàn)的對(duì)稱(chēng)軸直線(xiàn)是,
點(diǎn)A的坐標(biāo)為,軸,交拋物線(xiàn)于點(diǎn)B,
點(diǎn)A與點(diǎn)B關(guān)于直線(xiàn)對(duì)稱(chēng),
;
拋物線(xiàn)與y軸交于點(diǎn),
.
.
拋物線(xiàn)的表達(dá)式為.
拋物線(xiàn)G的解析式為:
由.
由,得:
拋物線(xiàn)與x軸的交點(diǎn)C的坐標(biāo)為,
點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為.
把代入,得:.
把代入,得:.
所求m的取值范圍是或.
故答案為:(1)M的坐標(biāo)為;(2)B(4,3);(3)或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長(zhǎng)AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸,垂足為C,連接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函數(shù)和反比例函數(shù)的解析式.
(2)結(jié)合圖象直接寫(xiě)出:當(dāng)y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過(guò)點(diǎn)D的切線(xiàn)交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長(zhǎng)線(xiàn)分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:
已知:求作:的內(nèi)切圓.
小明的作法如下:如圖2,
作,的平分線(xiàn)BE和CF,兩線(xiàn)相交于點(diǎn)O;
過(guò)點(diǎn)O作,垂足為點(diǎn)D;
點(diǎn)O為圓心,OD長(zhǎng)為半徑作所以,即為所求作的圓.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),N是A'B'的中點(diǎn),連接MN,若BC=4,∠ABC=60°,則線(xiàn)段MN的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ΔABC內(nèi)接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)若E是BD的中點(diǎn),連結(jié)CE,試判斷CE與⊙O的位置關(guān)系.
(2)若AC=3CD,求∠A的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),它的垂直平分線(xiàn)分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.
(1)請(qǐng)判斷四邊形EBGD的形狀,并說(shuō)明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AD=4,CD=10,P是AB上一動(dòng)點(diǎn),M、N、E分別是PD、PC、CD的中點(diǎn).
(1)求證:四邊形PMEN是平行四邊形;
(2)請(qǐng)直接寫(xiě)出當(dāng)AP為何值時(shí),四邊形PMEN是菱形;
(3)四邊形PMEN有可能是矩形嗎?若有可能,求出AP的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com