分析:由正方形得出AD∥BC,∠BAD=∠ADC=∠DCB=∠ABC=90°,AD=AB=BC=CD,根據(jù)全等三角形的判定證出△BAF≌△CBG≌△DCH≌△ADE,得出∠BAF=∠CBG=∠HCD=∠ADE,證△CGR≌△BFQ≌△AEP≌△DHS,得出正方形SPQR,設(shè)△DHS的面積是a,設(shè)四邊形HSPA的面積是b,根據(jù)相似三角形的性質(zhì)求出a、b的值,進一步求出a+b的值,由S
四邊形PQRS=1×1-4(a+b),代入即可求出答案.
解答:∵四邊形ABCD是正方形,
∴AD=CD=BC=AB,∠EAD=∠HDC=∠GCB=∠FBA=90°,
∵AE=BF=CG=DH,
∴△EAD≌△FBA≌△GCB≌△HDC(SAS),
∴∠EAP=∠HDE=∠FBQ=∠HCD,
∴∠QPS=∠ADE+∠DAP=∠BAF+∠DAP=∠BAD=90°,
同理∠PSR=90°∠SRQ=90°,
∴四邊形PSRQ是矩形,
∵∠HSD=∠GRC=∠APE=∠BQF=90°,∠GCR=∠HDS=∠EAP=∠QBF,CG=HD=AE=BF,
∴△CGR≌△BFQ≌△AEP≌△DHS,
∴CR=DS=AP=BQ,GR=HS=EP=QF,
∵△EAD≌△FBA≌△GCB≌△HDC,
∴DE=AF=BG=CH,
∴SR=SP,
∴矩形SPQR是正方形,
又∵S
△ADE=x/2,
設(shè)△DHS的面積是a,設(shè)四邊形HSPA的面積是b,
CH∥AF,
∴△DSH∽△DPA,
∴
=
,
∴
=
,
∴a=
b,
S
△AED=
x=2a+b=
b,
∴b=
,
a+b=
,
∴S
四邊形PQRS=1×1-4(a+b)=
,
故答案為:
.
點評:本題主要考查對正方形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,比例的性質(zhì),直角三角形的性質(zhì)等知識點的理解和掌握,此題是一個拔高的題目,有一定的難度.