【題目】如圖,直線與軸, 軸分別交于兩點(diǎn),把沿著直線翻折后得到,則點(diǎn)的坐標(biāo)是 ___________ 。
【答案】(,3)
【解析】
如圖,過(guò)點(diǎn)O'作O'C⊥OA,垂足為C.
∵點(diǎn)A是直線與x軸的交點(diǎn),
又∵當(dāng)y=0時(shí), ,
∴,
∴點(diǎn)A的坐標(biāo)為(, 0),
∴OA=.
∵點(diǎn)B是直線與y軸的交點(diǎn),
又∵當(dāng)x=0時(shí), ,
∴點(diǎn)B的坐標(biāo)為(0, 2),
∴OB=2.
∴在Rt△AOB中, .
∵在Rt△AOB中,AB=4,OB=2,即,
∴∠OAB=30°.
∵△AOB沿直線AB翻折得到△AO'B,
∴△AOB≌△AO'B,
∴∠O'AB=∠OAB=30°,O'A=OA=.
∴∠OAO'=∠OAB+∠O'AB=60°,即∠CAO'=60°,
∴在Rt△O'CA中,∠AO'C=90°-∠CAO'=90°-60°=30°,
∴在Rt△O'CA中, , ,
∴OC=OA-AC=-=.
∵OC=,O'C=3,
∴點(diǎn)O'的坐標(biāo)為(, 3).
故本題應(yīng)填寫:(, 3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過(guò)1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過(guò)1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過(guò)部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過(guò)計(jì)算說(shuō)明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),若把這個(gè)多邊形分割成6個(gè)三角形,則n的值是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遼寧男籃奪冠后,從4月21日至24日各類媒體關(guān)于“遼籃CBA奪冠”的相關(guān)文章達(dá)到81000篇,將數(shù)據(jù)81000用科學(xué)記數(shù)法表示為( 。
A. 0.81×104B. 0.81×105C. 8.1×104D. 8.1×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△CBF的面積最大?求出△CBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級(jí)污水處理池(平面圖如圖ABCD所示).由于地形限制,三級(jí)污水處理池的長(zhǎng)、寬都不能超過(guò)16米.如果池的外圍墻建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)為每米300元,池底建造單價(jià)為每平方米80元.(池墻的厚度忽略不計(jì))當(dāng)三級(jí)污水處理池的總造價(jià)為47200元時(shí),求池長(zhǎng)x.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com