如圖,依次連接第一個矩形各邊的中點得到一個菱形,再依次連接菱形各邊的中點得到第二個矩形,按照此方法繼續(xù)下去.已知第一個矩形的面積為1,則第n個矩形的面積為(  )
    分析:易得第二個矩形的面積為(
    1
    2
    2,第三個矩形的面積為(
    1
    2
    4,依此類推,第n個矩形的面積為(
    1
    2
    2n-2
    解答:解:已知第一個矩形的面積為1;
    第二個矩形的面積為原來的(
    1
    2
    2×2-2=
    1
    4
    ;
    第三個矩形的面積是(
    1
    2
    2×3-2=
    1
    16


    故第n個矩形的面積為:(
    1
    2
    2n-2=(
    1
    4
    n-1=
    1
    4n-1

    故選B.
    點評:本題考查了三角形的中位線定理及矩形、菱形的性質(zhì),是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,依次連接第一個矩形各邊的中點得到一個菱形,再依次連接菱形各邊的中點得到第二個矩形,按照此方法繼續(xù)下去.已知第一個矩形的面積為1,則第n個矩形的面積為
     

    精英家教網(wǎng)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,依次連接一個邊長為1的正方形各邊的中點,得到第二個正方形,再依次連接第二個正方形各邊的中點,得到第三個正方形,按此方法繼續(xù)下去,則第六個正方形的面積是
     

    精英家教網(wǎng)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,依次連接一個邊長為1的正方形各邊的中點,得到第二個正方形,再依次連接第二個正方形各邊的中點,得到第三個正方形,按此方法繼續(xù)下去,則第n個正方形的面積是
     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,依次連接第一個矩形各邊的中點得到一個菱形,再依次連接菱形各邊的中點得到第二個矩形,按照此方法繼續(xù)下去.已知第一個矩形的面積為1,則第2個矩形的面積為
     
    ,第n個矩形的面積為
     

    精英家教網(wǎng)

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    (2012•澄海區(qū)模擬)如圖,依次連接第一個矩形各邊的中點得到一個菱形,再依次連接菱形各邊的中點得到第二個矩形,按照此方法繼續(xù)下去.已知第一個矩形的兩條鄰邊長分別為6和8,則第n個菱形的周長為
    20
    2n-1
    20
    2n-1
    . 

    查看答案和解析>>

    同步練習(xí)冊答案