【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(3)△ABC 直角三角形(填“是”或“不是”);
(4)請(qǐng)?jiān)?/span>y軸上畫(huà)一點(diǎn)P,使△PB1C的周長(zhǎng)最小,并寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】(1)平面直角坐標(biāo)系見(jiàn)詳解,(2)見(jiàn)詳解,(3)不是,(4)P點(diǎn)見(jiàn)詳解作圖,.
【解析】
(1)根據(jù)A點(diǎn)坐標(biāo)建立平面直角坐標(biāo)系即可,
(2)分別作出各點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn),再順次連接即可,
(3)利用勾股定理分別求出AB,BC,AC的長(zhǎng),即可證明是否滿(mǎn)足勾股定理,
(4) 作出點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)B2,連接B2交y軸于點(diǎn)P,則P點(diǎn)即為所求.
解:(1)平面直角坐標(biāo)系如圖.
(2)△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1如上圖.
(3)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4),且每一個(gè)小正方形的邊長(zhǎng)為1,利用勾股定理求得有
有即
故△ABC不是直角三角形.
(4))作點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn),連接A交y軸于點(diǎn)P,則點(diǎn)P即為所求.
設(shè)直線A的解析式為y=kx+b(k≠0),
∵A(-4,6), (2,2),
∴解得
∴直線A的解析式為:
∴當(dāng)x=0時(shí),y=,
∴P點(diǎn)的坐標(biāo)為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形ABCDE的各內(nèi)角相等.
(1)求每個(gè)內(nèi)角的度數(shù);
(2)連接AC,AD,∠1=∠2,∠3=∠4,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫(xiě)出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請(qǐng)寫(xiě)出一個(gè)反映,,之間關(guān)系的等式________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把長(zhǎng)與寬之比為的矩形紙片稱(chēng)為標(biāo)準(zhǔn)紙.不難發(fā)現(xiàn),將一張標(biāo)準(zhǔn)紙如圖一次又一次對(duì)開(kāi)后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙,,,那么把它第次對(duì)開(kāi)后所得標(biāo)準(zhǔn)紙的周長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)和(頂點(diǎn)是網(wǎng)格線的交點(diǎn)).點(diǎn)、坐標(biāo)為,.
觀察圖形填空:是由繞________點(diǎn)順時(shí)針旋轉(zhuǎn)________度得到的;
把中的圖形作為一個(gè)新的”基本圖形“,將新的基本圖形繞點(diǎn)順時(shí)針旋轉(zhuǎn)度,請(qǐng)作出旋轉(zhuǎn)后的圖形,其中,、、、的對(duì)應(yīng)點(diǎn)分別為、、、.依次連接、、、,則四邊形的形狀為________;
以點(diǎn)為位似中心,位似比為(原圖與新圖對(duì)應(yīng)邊的比為),作出四邊形的位似圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于(2,0)、(1,0),與y軸交于C,直線l1經(jīng)過(guò)點(diǎn)C且平行于x軸,與拋物線的另一個(gè)交點(diǎn)為D,將直線l1向下平移t個(gè)單位得到直線l2,l2與拋物線交于A、B兩點(diǎn).
(1)求拋物線解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)t=2時(shí),探究△ABC的形狀,并說(shuō)明理由;
(3)在(2)的條件下,點(diǎn)M(m,0)在x軸上自由運(yùn)動(dòng),過(guò)M作MN⊥x軸,交直線BC于P,交拋物線于N,若三個(gè)點(diǎn)M、N、P中恰有一個(gè)點(diǎn)是其他兩個(gè)點(diǎn)連線段的中點(diǎn)(三點(diǎn)重合除外),則稱(chēng)M、N、P三點(diǎn)為“共諧點(diǎn)”,請(qǐng)直接寫(xiě)出使得M、P、N三點(diǎn)為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com